NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  f1of GIF version

Theorem f1of 5288
Description: A one-to-one onto mapping is a mapping. (Contributed by set.mm contributors, 12-Dec-2003.)
Assertion
Ref Expression
f1of (F:A1-1-ontoBF:A–→B)

Proof of Theorem f1of
StepHypRef Expression
1 f1of1 5287 . 2 (F:A1-1-ontoBF:A1-1B)
2 f1f 5259 . 2 (F:A1-1BF:A–→B)
31, 2syl 15 1 (F:A1-1-ontoBF:A–→B)
Colors of variables: wff setvar class
Syntax hints:  wi 4  –→wf 4778  1-1wf1 4779  1-1-ontowf1o 4781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-f1 4793  df-f1o 4795
This theorem is referenced by:  f1ofn  5289  f1imacnv  5303  fsn  5433  f1ocnvfv1  5477  f1ofveu  5481  f1ocnvdm  5482  isocnv  5492  isores2  5494  isotr  5496  f1oiso2  5501  mapsn  6027  enmap2lem5  6068  enmap1lem5  6074  1cnc  6140
  Copyright terms: Public domain W3C validator