NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  dff1o5 GIF version

Theorem dff1o5 5296
Description: Alternate definition of one-to-one onto function. (The proof was shortened by Andrew Salmon, 22-Oct-2011.) (Contributed by set.mm contributors, 10-Dec-2003.) (Revised by set.mm contributors, 22-Oct-2011.)
Assertion
Ref Expression
dff1o5 (F:A1-1-ontoB ↔ (F:A1-1B ran F = B))

Proof of Theorem dff1o5
StepHypRef Expression
1 df-f1o 4795 . 2 (F:A1-1-ontoB ↔ (F:A1-1B F:AontoB))
2 f1f 5259 . . . . 5 (F:A1-1BF:A–→B)
32biantrurd 494 . . . 4 (F:A1-1B → (ran F = B ↔ (F:A–→B ran F = B)))
4 dffo2 5274 . . . 4 (F:AontoB ↔ (F:A–→B ran F = B))
53, 4syl6rbbr 255 . . 3 (F:A1-1B → (F:AontoB ↔ ran F = B))
65pm5.32i 618 . 2 ((F:A1-1B F:AontoB) ↔ (F:A1-1B ran F = B))
71, 6bitri 240 1 (F:A1-1-ontoB ↔ (F:A1-1B ran F = B))
Colors of variables: wff setvar class
Syntax hints:  wb 176   wa 358   = wceq 1642  ran crn 4774  –→wf 4778  1-1wf1 4779  ontowfo 4780  1-1-ontowf1o 4781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-ss 3260  df-f 4792  df-f1 4793  df-fo 4794  df-f1o 4795
This theorem is referenced by:  f1orescnv  5302
  Copyright terms: Public domain W3C validator