New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > dff1o5 | GIF version |
Description: Alternate definition of one-to-one onto function. (The proof was shortened by Andrew Salmon, 22-Oct-2011.) (Contributed by set.mm contributors, 10-Dec-2003.) (Revised by set.mm contributors, 22-Oct-2011.) |
Ref | Expression |
---|---|
dff1o5 | ⊢ (F:A–1-1-onto→B ↔ (F:A–1-1→B ∧ ran F = B)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-f1o 4795 | . 2 ⊢ (F:A–1-1-onto→B ↔ (F:A–1-1→B ∧ F:A–onto→B)) | |
2 | f1f 5259 | . . . . 5 ⊢ (F:A–1-1→B → F:A–→B) | |
3 | 2 | biantrurd 494 | . . . 4 ⊢ (F:A–1-1→B → (ran F = B ↔ (F:A–→B ∧ ran F = B))) |
4 | dffo2 5274 | . . . 4 ⊢ (F:A–onto→B ↔ (F:A–→B ∧ ran F = B)) | |
5 | 3, 4 | syl6rbbr 255 | . . 3 ⊢ (F:A–1-1→B → (F:A–onto→B ↔ ran F = B)) |
6 | 5 | pm5.32i 618 | . 2 ⊢ ((F:A–1-1→B ∧ F:A–onto→B) ↔ (F:A–1-1→B ∧ ran F = B)) |
7 | 1, 6 | bitri 240 | 1 ⊢ (F:A–1-1-onto→B ↔ (F:A–1-1→B ∧ ran F = B)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 = wceq 1642 ran crn 4774 –→wf 4778 –1-1→wf1 4779 –onto→wfo 4780 –1-1-onto→wf1o 4781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 df-f 4792 df-f1 4793 df-fo 4794 df-f1o 4795 |
This theorem is referenced by: f1orescnv 5302 |
Copyright terms: Public domain | W3C validator |