New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > f1ss | GIF version |
Description: A function that is one-to-one is also one-to-one on some superset of its range. (Contributed by Mario Carneiro, 12-Jan-2013.) |
Ref | Expression |
---|---|
f1ss | ⊢ ((F:A–1-1→B ∧ B ⊆ C) → F:A–1-1→C) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1f 5259 | . . 3 ⊢ (F:A–1-1→B → F:A–→B) | |
2 | fss 5231 | . . 3 ⊢ ((F:A–→B ∧ B ⊆ C) → F:A–→C) | |
3 | 1, 2 | sylan 457 | . 2 ⊢ ((F:A–1-1→B ∧ B ⊆ C) → F:A–→C) |
4 | df-f1 4793 | . . . 4 ⊢ (F:A–1-1→B ↔ (F:A–→B ∧ Fun ◡F)) | |
5 | 4 | simprbi 450 | . . 3 ⊢ (F:A–1-1→B → Fun ◡F) |
6 | 5 | adantr 451 | . 2 ⊢ ((F:A–1-1→B ∧ B ⊆ C) → Fun ◡F) |
7 | df-f1 4793 | . 2 ⊢ (F:A–1-1→C ↔ (F:A–→C ∧ Fun ◡F)) | |
8 | 3, 6, 7 | sylanbrc 645 | 1 ⊢ ((F:A–1-1→B ∧ B ⊆ C) → F:A–1-1→C) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ⊆ wss 3258 ◡ccnv 4772 Fun wfun 4776 –→wf 4778 –1-1→wf1 4779 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 df-f 4792 df-f1 4793 |
This theorem is referenced by: dflec3 6222 |
Copyright terms: Public domain | W3C validator |