NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  f1ss GIF version

Theorem f1ss 5263
Description: A function that is one-to-one is also one-to-one on some superset of its range. (Contributed by Mario Carneiro, 12-Jan-2013.)
Assertion
Ref Expression
f1ss ((F:A1-1B B C) → F:A1-1C)

Proof of Theorem f1ss
StepHypRef Expression
1 f1f 5259 . . 3 (F:A1-1BF:A–→B)
2 fss 5231 . . 3 ((F:A–→B B C) → F:A–→C)
31, 2sylan 457 . 2 ((F:A1-1B B C) → F:A–→C)
4 df-f1 4793 . . . 4 (F:A1-1B ↔ (F:A–→B Fun F))
54simprbi 450 . . 3 (F:A1-1B → Fun F)
65adantr 451 . 2 ((F:A1-1B B C) → Fun F)
7 df-f1 4793 . 2 (F:A1-1C ↔ (F:A–→C Fun F))
83, 6, 7sylanbrc 645 1 ((F:A1-1B B C) → F:A1-1C)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358   wss 3258  ccnv 4772  Fun wfun 4776  –→wf 4778  1-1wf1 4779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-ss 3260  df-f 4792  df-f1 4793
This theorem is referenced by:  dflec3  6222
  Copyright terms: Public domain W3C validator