NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  simplbi GIF version

Theorem simplbi 446
Description: Deduction eliminating a conjunct. (Contributed by NM, 27-May-1998.)
Hypothesis
Ref Expression
simplbi.1 (φ ↔ (ψ χ))
Assertion
Ref Expression
simplbi (φψ)

Proof of Theorem simplbi
StepHypRef Expression
1 simplbi.1 . . 3 (φ ↔ (ψ χ))
21biimpi 186 . 2 (φ → (ψ χ))
32simpld 445 1 (φψ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  3simpa  952  reurex  2826  eqimss  3324  pssss  3365  eldifi  3389  inss1  3476  ssunsn2  3866  fnfun  5182  ffn  5224  f1f  5259  f1of1  5287  f1ofo  5294  nfvres  5353  ressnop0  5437  isof1o  5489  1stfo  5506  oprabid  5551  brtxp  5784  otelins2  5792  otelins3  5793  oqelins4  5795  weds  5939  ersym  5953  nchoicelem4  6293  nchoicelem8  6297  nchoicelem9  6298  nchoicelem19  6308  fnfreclem3  6320
  Copyright terms: Public domain W3C validator