New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > simplbi | GIF version |
Description: Deduction eliminating a conjunct. (Contributed by NM, 27-May-1998.) |
Ref | Expression |
---|---|
simplbi.1 | ⊢ (φ ↔ (ψ ∧ χ)) |
Ref | Expression |
---|---|
simplbi | ⊢ (φ → ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplbi.1 | . . 3 ⊢ (φ ↔ (ψ ∧ χ)) | |
2 | 1 | biimpi 186 | . 2 ⊢ (φ → (ψ ∧ χ)) |
3 | 2 | simpld 445 | 1 ⊢ (φ → ψ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: 3simpa 952 reurex 2826 eqimss 3324 pssss 3365 eldifi 3389 inss1 3476 ssunsn2 3866 fnfun 5182 ffn 5224 f1f 5259 f1of1 5287 f1ofo 5294 nfvres 5353 ressnop0 5437 isof1o 5489 1stfo 5506 oprabid 5551 brtxp 5784 otelins2 5792 otelins3 5793 oqelins4 5795 weds 5939 ersym 5953 nchoicelem4 6293 nchoicelem8 6297 nchoicelem9 6298 nchoicelem19 6308 fnfreclem3 6320 |
Copyright terms: Public domain | W3C validator |