Step | Hyp | Ref
| Expression |
1 | | elncs 6120 |
. . . 4
⊢ (M ∈ NC ↔ ∃x M = Nc x) |
2 | | elncs 6120 |
. . . 4
⊢ (N ∈ NC ↔ ∃y N = Nc y) |
3 | 1, 2 | anbi12i 678 |
. . 3
⊢ ((M ∈ NC ∧ N ∈ NC ) ↔ (∃x M = Nc x ∧ ∃y N = Nc y)) |
4 | | eeanv 1913 |
. . 3
⊢ (∃x∃y(M = Nc x ∧ N = Nc y) ↔ (∃x M = Nc x ∧ ∃y N = Nc y)) |
5 | 3, 4 | bitr4i 243 |
. 2
⊢ ((M ∈ NC ∧ N ∈ NC ) ↔ ∃x∃y(M = Nc x ∧ N = Nc y)) |
6 | | ncex 6118 |
. . . . . 6
⊢ Nc x ∈ V |
7 | | ncex 6118 |
. . . . . 6
⊢ Nc y ∈ V |
8 | 6, 7 | brlec 6114 |
. . . . 5
⊢ ( Nc x
≤c Nc y ↔ ∃c ∈ Nc x∃b ∈ Nc yc ⊆ b) |
9 | | rexcom 2773 |
. . . . . 6
⊢ (∃c ∈ Nc x∃b ∈ Nc yc ⊆ b ↔ ∃b ∈ Nc y∃c ∈ Nc xc ⊆ b) |
10 | | f1oi 5321 |
. . . . . . . . . . . . 13
⊢ ( I ↾ c):c–1-1-onto→c |
11 | | f1of1 5287 |
. . . . . . . . . . . . 13
⊢ (( I ↾ c):c–1-1-onto→c → (
I ↾ c):c–1-1→c) |
12 | 10, 11 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ ( I ↾ c):c–1-1→c |
13 | | f1ss 5263 |
. . . . . . . . . . . 12
⊢ ((( I ↾ c):c–1-1→c ∧ c ⊆ b) → (
I ↾ c):c–1-1→b) |
14 | 12, 13 | mpan 651 |
. . . . . . . . . . 11
⊢ (c ⊆ b → ( I ↾
c):c–1-1→b) |
15 | | idex 5505 |
. . . . . . . . . . . . 13
⊢ I ∈ V |
16 | | vex 2863 |
. . . . . . . . . . . . 13
⊢ c ∈
V |
17 | 15, 16 | resex 5118 |
. . . . . . . . . . . 12
⊢ ( I ↾ c) ∈ V |
18 | | f1eq1 5254 |
. . . . . . . . . . . 12
⊢ (f = ( I ↾
c) → (f:c–1-1→b
↔ ( I ↾ c):c–1-1→b)) |
19 | 17, 18 | spcev 2947 |
. . . . . . . . . . 11
⊢ (( I ↾ c):c–1-1→b →
∃f
f:c–1-1→b) |
20 | 14, 19 | syl 15 |
. . . . . . . . . 10
⊢ (c ⊆ b → ∃f f:c–1-1→b) |
21 | | f1eq2 5255 |
. . . . . . . . . . . 12
⊢ (a = c →
(f:a–1-1→b ↔
f:c–1-1→b)) |
22 | 21 | exbidv 1626 |
. . . . . . . . . . 11
⊢ (a = c →
(∃f
f:a–1-1→b ↔
∃f
f:c–1-1→b)) |
23 | 22 | rspcev 2956 |
. . . . . . . . . 10
⊢ ((c ∈ Nc x ∧ ∃f f:c–1-1→b) →
∃a ∈ Nc x∃f f:a–1-1→b) |
24 | 20, 23 | sylan2 460 |
. . . . . . . . 9
⊢ ((c ∈ Nc x ∧ c ⊆ b) →
∃a ∈ Nc x∃f f:a–1-1→b) |
25 | 24 | rexlimiva 2734 |
. . . . . . . 8
⊢ (∃c ∈ Nc xc ⊆ b →
∃a ∈ Nc x∃f f:a–1-1→b) |
26 | | vex 2863 |
. . . . . . . . . . . . . . . 16
⊢ a ∈
V |
27 | 26 | eqnc 6128 |
. . . . . . . . . . . . . . 15
⊢ ( Nc a = Nc x ↔ a ≈ x) |
28 | | elnc 6126 |
. . . . . . . . . . . . . . 15
⊢ (a ∈ Nc x ↔ a ≈ x) |
29 | 27, 28 | bitr4i 243 |
. . . . . . . . . . . . . 14
⊢ ( Nc a = Nc x ↔ a ∈ Nc x) |
30 | | f1f1orn 5298 |
. . . . . . . . . . . . . . . . . 18
⊢ (f:a–1-1→b
→ f:a–1-1-onto→ran
f) |
31 | | vex 2863 |
. . . . . . . . . . . . . . . . . . 19
⊢ f ∈
V |
32 | 31 | f1oen 6034 |
. . . . . . . . . . . . . . . . . 18
⊢ (f:a–1-1-onto→ran f
→ a ≈ ran f) |
33 | 30, 32 | syl 15 |
. . . . . . . . . . . . . . . . 17
⊢ (f:a–1-1→b
→ a ≈ ran f) |
34 | | ensym 6038 |
. . . . . . . . . . . . . . . . 17
⊢ (a ≈ ran f
↔ ran f ≈ a) |
35 | 33, 34 | sylib 188 |
. . . . . . . . . . . . . . . 16
⊢ (f:a–1-1→b
→ ran f ≈ a) |
36 | | elnc 6126 |
. . . . . . . . . . . . . . . 16
⊢ (ran f ∈ Nc a ↔ ran
f ≈ a) |
37 | 35, 36 | sylibr 203 |
. . . . . . . . . . . . . . 15
⊢ (f:a–1-1→b
→ ran f ∈ Nc a) |
38 | | eleq2 2414 |
. . . . . . . . . . . . . . 15
⊢ ( Nc a = Nc x → (ran
f ∈ Nc a ↔ ran
f ∈ Nc x)) |
39 | 37, 38 | syl5ib 210 |
. . . . . . . . . . . . . 14
⊢ ( Nc a = Nc x →
(f:a–1-1→b →
ran f ∈
Nc x)) |
40 | 29, 39 | sylbir 204 |
. . . . . . . . . . . . 13
⊢ (a ∈ Nc x →
(f:a–1-1→b →
ran f ∈
Nc x)) |
41 | 40 | imp 418 |
. . . . . . . . . . . 12
⊢ ((a ∈ Nc x ∧ f:a–1-1→b) →
ran f ∈
Nc x) |
42 | | f1f 5259 |
. . . . . . . . . . . . . 14
⊢ (f:a–1-1→b
→ f:a–→b) |
43 | | frn 5229 |
. . . . . . . . . . . . . 14
⊢ (f:a–→b
→ ran f ⊆ b) |
44 | 42, 43 | syl 15 |
. . . . . . . . . . . . 13
⊢ (f:a–1-1→b
→ ran f ⊆ b) |
45 | 44 | adantl 452 |
. . . . . . . . . . . 12
⊢ ((a ∈ Nc x ∧ f:a–1-1→b) →
ran f ⊆
b) |
46 | | sseq1 3293 |
. . . . . . . . . . . . 13
⊢ (c = ran f →
(c ⊆
b ↔ ran f ⊆ b)) |
47 | 46 | rspcev 2956 |
. . . . . . . . . . . 12
⊢ ((ran f ∈ Nc x ∧ ran f ⊆ b) →
∃c ∈ Nc xc ⊆ b) |
48 | 41, 45, 47 | syl2anc 642 |
. . . . . . . . . . 11
⊢ ((a ∈ Nc x ∧ f:a–1-1→b) →
∃c ∈ Nc xc ⊆ b) |
49 | 48 | ex 423 |
. . . . . . . . . 10
⊢ (a ∈ Nc x →
(f:a–1-1→b →
∃c ∈ Nc xc ⊆ b)) |
50 | 49 | exlimdv 1636 |
. . . . . . . . 9
⊢ (a ∈ Nc x → (∃f f:a–1-1→b
→ ∃c ∈ Nc xc ⊆ b)) |
51 | 50 | rexlimiv 2733 |
. . . . . . . 8
⊢ (∃a ∈ Nc x∃f f:a–1-1→b →
∃c ∈ Nc xc ⊆ b) |
52 | 25, 51 | impbii 180 |
. . . . . . 7
⊢ (∃c ∈ Nc xc ⊆ b ↔
∃a ∈ Nc x∃f f:a–1-1→b) |
53 | 52 | rexbii 2640 |
. . . . . 6
⊢ (∃b ∈ Nc y∃c ∈ Nc xc ⊆ b ↔ ∃b ∈ Nc y∃a ∈ Nc x∃f f:a–1-1→b) |
54 | 9, 53 | bitri 240 |
. . . . 5
⊢ (∃c ∈ Nc x∃b ∈ Nc yc ⊆ b ↔ ∃b ∈ Nc y∃a ∈ Nc x∃f f:a–1-1→b) |
55 | | rexcom 2773 |
. . . . 5
⊢ (∃b ∈ Nc y∃a ∈ Nc x∃f f:a–1-1→b
↔ ∃a ∈ Nc x∃b ∈ Nc y∃f f:a–1-1→b) |
56 | 8, 54, 55 | 3bitri 262 |
. . . 4
⊢ ( Nc x
≤c Nc y ↔ ∃a ∈ Nc x∃b ∈ Nc y∃f f:a–1-1→b) |
57 | | breq12 4645 |
. . . . 5
⊢ ((M = Nc x ∧ N = Nc y) → (M
≤c N ↔ Nc x
≤c Nc y)) |
58 | | simpl 443 |
. . . . . 6
⊢ ((M = Nc x ∧ N = Nc y) → M =
Nc x) |
59 | | rexeq 2809 |
. . . . . . 7
⊢ (N = Nc y → (∃b ∈ N ∃f f:a–1-1→b
↔ ∃b ∈ Nc y∃f f:a–1-1→b)) |
60 | 59 | adantl 452 |
. . . . . 6
⊢ ((M = Nc x ∧ N = Nc y) → (∃b ∈ N ∃f f:a–1-1→b
↔ ∃b ∈ Nc y∃f f:a–1-1→b)) |
61 | 58, 60 | rexeqbidv 2821 |
. . . . 5
⊢ ((M = Nc x ∧ N = Nc y) → (∃a ∈ M ∃b ∈ N ∃f f:a–1-1→b
↔ ∃a ∈ Nc x∃b ∈ Nc y∃f f:a–1-1→b)) |
62 | 57, 61 | bibi12d 312 |
. . . 4
⊢ ((M = Nc x ∧ N = Nc y) → ((M
≤c N ↔ ∃a ∈ M ∃b ∈ N ∃f f:a–1-1→b)
↔ ( Nc x
≤c Nc y ↔ ∃a ∈ Nc x∃b ∈ Nc y∃f f:a–1-1→b))) |
63 | 56, 62 | mpbiri 224 |
. . 3
⊢ ((M = Nc x ∧ N = Nc y) → (M
≤c N ↔ ∃a ∈ M ∃b ∈ N ∃f f:a–1-1→b)) |
64 | 63 | exlimivv 1635 |
. 2
⊢ (∃x∃y(M = Nc x ∧ N = Nc y) → (M
≤c N ↔ ∃a ∈ M ∃b ∈ N ∃f f:a–1-1→b)) |
65 | 5, 64 | sylbi 187 |
1
⊢ ((M ∈ NC ∧ N ∈ NC ) → (M
≤c N ↔ ∃a ∈ M ∃b ∈ N ∃f f:a–1-1→b)) |