NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  dflec3 GIF version

Theorem dflec3 6222
Description: Another potential definition of cardinal inequality. (Contributed by SF, 23-Mar-2015.)
Assertion
Ref Expression
dflec3 ((M NC N NC ) → (Mc Na M b N f f:a1-1b))
Distinct variable groups:   M,a   N,a,b   f,a,b
Allowed substitution hints:   M(f,b)   N(f)

Proof of Theorem dflec3
Dummy variables x y c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elncs 6120 . . . 4 (M NCx M = Nc x)
2 elncs 6120 . . . 4 (N NCy N = Nc y)
31, 2anbi12i 678 . . 3 ((M NC N NC ) ↔ (x M = Nc x y N = Nc y))
4 eeanv 1913 . . 3 (xy(M = Nc x N = Nc y) ↔ (x M = Nc x y N = Nc y))
53, 4bitr4i 243 . 2 ((M NC N NC ) ↔ xy(M = Nc x N = Nc y))
6 ncex 6118 . . . . . 6 Nc x V
7 ncex 6118 . . . . . 6 Nc y V
86, 7brlec 6114 . . . . 5 ( Nc xc Nc yc Nc xb Nc yc b)
9 rexcom 2773 . . . . . 6 (c Nc xb Nc yc bb Nc yc Nc xc b)
10 f1oi 5321 . . . . . . . . . . . . 13 ( I c):c1-1-ontoc
11 f1of1 5287 . . . . . . . . . . . . 13 (( I c):c1-1-ontoc → ( I c):c1-1c)
1210, 11ax-mp 5 . . . . . . . . . . . 12 ( I c):c1-1c
13 f1ss 5263 . . . . . . . . . . . 12 ((( I c):c1-1c c b) → ( I c):c1-1b)
1412, 13mpan 651 . . . . . . . . . . 11 (c b → ( I c):c1-1b)
15 idex 5505 . . . . . . . . . . . . 13 I V
16 vex 2863 . . . . . . . . . . . . 13 c V
1715, 16resex 5118 . . . . . . . . . . . 12 ( I c) V
18 f1eq1 5254 . . . . . . . . . . . 12 (f = ( I c) → (f:c1-1b ↔ ( I c):c1-1b))
1917, 18spcev 2947 . . . . . . . . . . 11 (( I c):c1-1bf f:c1-1b)
2014, 19syl 15 . . . . . . . . . 10 (c bf f:c1-1b)
21 f1eq2 5255 . . . . . . . . . . . 12 (a = c → (f:a1-1bf:c1-1b))
2221exbidv 1626 . . . . . . . . . . 11 (a = c → (f f:a1-1bf f:c1-1b))
2322rspcev 2956 . . . . . . . . . 10 ((c Nc x f f:c1-1b) → a Nc xf f:a1-1b)
2420, 23sylan2 460 . . . . . . . . 9 ((c Nc x c b) → a Nc xf f:a1-1b)
2524rexlimiva 2734 . . . . . . . 8 (c Nc xc ba Nc xf f:a1-1b)
26 vex 2863 . . . . . . . . . . . . . . . 16 a V
2726eqnc 6128 . . . . . . . . . . . . . . 15 ( Nc a = Nc xax)
28 elnc 6126 . . . . . . . . . . . . . . 15 (a Nc xax)
2927, 28bitr4i 243 . . . . . . . . . . . . . 14 ( Nc a = Nc xa Nc x)
30 f1f1orn 5298 . . . . . . . . . . . . . . . . . 18 (f:a1-1bf:a1-1-onto→ran f)
31 vex 2863 . . . . . . . . . . . . . . . . . . 19 f V
3231f1oen 6034 . . . . . . . . . . . . . . . . . 18 (f:a1-1-onto→ran fa ≈ ran f)
3330, 32syl 15 . . . . . . . . . . . . . . . . 17 (f:a1-1ba ≈ ran f)
34 ensym 6038 . . . . . . . . . . . . . . . . 17 (a ≈ ran f ↔ ran fa)
3533, 34sylib 188 . . . . . . . . . . . . . . . 16 (f:a1-1b → ran fa)
36 elnc 6126 . . . . . . . . . . . . . . . 16 (ran f Nc a ↔ ran fa)
3735, 36sylibr 203 . . . . . . . . . . . . . . 15 (f:a1-1b → ran f Nc a)
38 eleq2 2414 . . . . . . . . . . . . . . 15 ( Nc a = Nc x → (ran f Nc a ↔ ran f Nc x))
3937, 38syl5ib 210 . . . . . . . . . . . . . 14 ( Nc a = Nc x → (f:a1-1b → ran f Nc x))
4029, 39sylbir 204 . . . . . . . . . . . . 13 (a Nc x → (f:a1-1b → ran f Nc x))
4140imp 418 . . . . . . . . . . . 12 ((a Nc x f:a1-1b) → ran f Nc x)
42 f1f 5259 . . . . . . . . . . . . . 14 (f:a1-1bf:a–→b)
43 frn 5229 . . . . . . . . . . . . . 14 (f:a–→b → ran f b)
4442, 43syl 15 . . . . . . . . . . . . 13 (f:a1-1b → ran f b)
4544adantl 452 . . . . . . . . . . . 12 ((a Nc x f:a1-1b) → ran f b)
46 sseq1 3293 . . . . . . . . . . . . 13 (c = ran f → (c b ↔ ran f b))
4746rspcev 2956 . . . . . . . . . . . 12 ((ran f Nc x ran f b) → c Nc xc b)
4841, 45, 47syl2anc 642 . . . . . . . . . . 11 ((a Nc x f:a1-1b) → c Nc xc b)
4948ex 423 . . . . . . . . . 10 (a Nc x → (f:a1-1bc Nc xc b))
5049exlimdv 1636 . . . . . . . . 9 (a Nc x → (f f:a1-1bc Nc xc b))
5150rexlimiv 2733 . . . . . . . 8 (a Nc xf f:a1-1bc Nc xc b)
5225, 51impbii 180 . . . . . . 7 (c Nc xc ba Nc xf f:a1-1b)
5352rexbii 2640 . . . . . 6 (b Nc yc Nc xc bb Nc ya Nc xf f:a1-1b)
549, 53bitri 240 . . . . 5 (c Nc xb Nc yc bb Nc ya Nc xf f:a1-1b)
55 rexcom 2773 . . . . 5 (b Nc ya Nc xf f:a1-1ba Nc xb Nc yf f:a1-1b)
568, 54, 553bitri 262 . . . 4 ( Nc xc Nc ya Nc xb Nc yf f:a1-1b)
57 breq12 4645 . . . . 5 ((M = Nc x N = Nc y) → (Mc NNc xc Nc y))
58 simpl 443 . . . . . 6 ((M = Nc x N = Nc y) → M = Nc x)
59 rexeq 2809 . . . . . . 7 (N = Nc y → (b N f f:a1-1bb Nc yf f:a1-1b))
6059adantl 452 . . . . . 6 ((M = Nc x N = Nc y) → (b N f f:a1-1bb Nc yf f:a1-1b))
6158, 60rexeqbidv 2821 . . . . 5 ((M = Nc x N = Nc y) → (a M b N f f:a1-1ba Nc xb Nc yf f:a1-1b))
6257, 61bibi12d 312 . . . 4 ((M = Nc x N = Nc y) → ((Mc Na M b N f f:a1-1b) ↔ ( Nc xc Nc ya Nc xb Nc yf f:a1-1b)))
6356, 62mpbiri 224 . . 3 ((M = Nc x N = Nc y) → (Mc Na M b N f f:a1-1b))
6463exlimivv 1635 . 2 (xy(M = Nc x N = Nc y) → (Mc Na M b N f f:a1-1b))
655, 64sylbi 187 1 ((M NC N NC ) → (Mc Na M b N f f:a1-1b))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358  wex 1541   = wceq 1642   wcel 1710  wrex 2616   wss 3258   class class class wbr 4640   I cid 4764  ran crn 4774   cres 4775  –→wf 4778  1-1wf1 4779  1-1-ontowf1o 4781  cen 6029   NC cncs 6089  c clec 6090   Nc cnc 6092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-1st 4724  df-swap 4725  df-sset 4726  df-co 4727  df-ima 4728  df-si 4729  df-id 4768  df-xp 4785  df-cnv 4786  df-rn 4787  df-dm 4788  df-res 4789  df-fun 4790  df-fn 4791  df-f 4792  df-f1 4793  df-fo 4794  df-f1o 4795  df-2nd 4798  df-txp 5737  df-ins2 5751  df-ins3 5753  df-image 5755  df-ins4 5757  df-si3 5759  df-funs 5761  df-fns 5763  df-trans 5900  df-sym 5909  df-er 5910  df-ec 5948  df-qs 5952  df-en 6030  df-ncs 6099  df-lec 6100  df-nc 6102
This theorem is referenced by:  nclenc  6223
  Copyright terms: Public domain W3C validator