Step | Hyp | Ref
| Expression |
1 | | vex 2863 |
. . . . . . . . . 10
⊢ u ∈
V |
2 | | eqeq1 2359 |
. . . . . . . . . . 11
⊢ (z = u →
(z = B
↔ u = B)) |
3 | 2 | rexbidv 2636 |
. . . . . . . . . 10
⊢ (z = u →
(∃x
∈ A
z = B
↔ ∃x ∈ A u = B)) |
4 | 1, 3 | elab 2986 |
. . . . . . . . 9
⊢ (u ∈ {z ∣ ∃x ∈ A z = B} ↔
∃x ∈ A u = B) |
5 | | r19.29 2755 |
. . . . . . . . . 10
⊢ ((∀x ∈ A (B:D–1-1→S
∧ ∀y ∈ A (B ⊆ C ∨ C ⊆ B)) ∧ ∃x ∈ A u = B) →
∃x ∈ A ((B:D–1-1→S
∧ ∀y ∈ A (B ⊆ C ∨ C ⊆ B)) ∧ u = B)) |
6 | | nfv 1619 |
. . . . . . . . . . . 12
⊢ Ⅎx(Fun u ∧ Fun ◡u) |
7 | | nfre1 2671 |
. . . . . . . . . . . . . 14
⊢ Ⅎx∃x ∈ A z = B |
8 | 7 | nfab 2494 |
. . . . . . . . . . . . 13
⊢
Ⅎx{z ∣ ∃x ∈ A z = B} |
9 | | nfv 1619 |
. . . . . . . . . . . . 13
⊢ Ⅎx(u ⊆ v ∨ v ⊆ u) |
10 | 8, 9 | nfral 2668 |
. . . . . . . . . . . 12
⊢ Ⅎx∀v ∈ {z ∣ ∃x ∈ A z = B} (u ⊆ v ∨ v ⊆ u) |
11 | 6, 10 | nfan 1824 |
. . . . . . . . . . 11
⊢ Ⅎx((Fun u ∧ Fun ◡u) ∧ ∀v ∈ {z ∣ ∃x ∈ A z = B} (u ⊆ v ∨ v ⊆ u)) |
12 | | f1eq1 5254 |
. . . . . . . . . . . . . . . 16
⊢ (u = B →
(u:D–1-1→S ↔
B:D–1-1→S)) |
13 | 12 | biimparc 473 |
. . . . . . . . . . . . . . 15
⊢ ((B:D–1-1→S
∧ u =
B) → u:D–1-1→S) |
14 | | f1fun 5261 |
. . . . . . . . . . . . . . . 16
⊢ (u:D–1-1→S
→ Fun u) |
15 | | df-f1 4793 |
. . . . . . . . . . . . . . . . 17
⊢ (u:D–1-1→S
↔ (u:D–→S
∧ Fun ◡u)) |
16 | 15 | simprbi 450 |
. . . . . . . . . . . . . . . 16
⊢ (u:D–1-1→S
→ Fun ◡u) |
17 | 14, 16 | jca 518 |
. . . . . . . . . . . . . . 15
⊢ (u:D–1-1→S
→ (Fun u ∧ Fun ◡u)) |
18 | 13, 17 | syl 15 |
. . . . . . . . . . . . . 14
⊢ ((B:D–1-1→S
∧ u =
B) → (Fun u ∧ Fun ◡u)) |
19 | 18 | adantlr 695 |
. . . . . . . . . . . . 13
⊢ (((B:D–1-1→S
∧ ∀y ∈ A (B ⊆ C ∨ C ⊆ B)) ∧ u = B) →
(Fun u ∧
Fun ◡u)) |
20 | | vex 2863 |
. . . . . . . . . . . . . . . . 17
⊢ v ∈
V |
21 | | eqeq1 2359 |
. . . . . . . . . . . . . . . . . . 19
⊢ (z = v →
(z = B
↔ v = B)) |
22 | 21 | rexbidv 2636 |
. . . . . . . . . . . . . . . . . 18
⊢ (z = v →
(∃x
∈ A
z = B
↔ ∃x ∈ A v = B)) |
23 | | fun11iun.1 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (x = y →
B = C) |
24 | 23 | eqeq2d 2364 |
. . . . . . . . . . . . . . . . . . 19
⊢ (x = y →
(v = B
↔ v = C)) |
25 | 24 | cbvrexv 2837 |
. . . . . . . . . . . . . . . . . 18
⊢ (∃x ∈ A v = B ↔
∃y ∈ A v = C) |
26 | 22, 25 | syl6bb 252 |
. . . . . . . . . . . . . . . . 17
⊢ (z = v →
(∃x
∈ A
z = B
↔ ∃y ∈ A v = C)) |
27 | 20, 26 | elab 2986 |
. . . . . . . . . . . . . . . 16
⊢ (v ∈ {z ∣ ∃x ∈ A z = B} ↔
∃y ∈ A v = C) |
28 | | r19.29 2755 |
. . . . . . . . . . . . . . . . . 18
⊢ ((∀y ∈ A (B ⊆ C ∨ C ⊆ B) ∧ ∃y ∈ A v = C) →
∃y ∈ A ((B ⊆ C ∨ C ⊆ B) ∧ v = C)) |
29 | | sseq12 3295 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((u = B ∧ v = C) → (u
⊆ v
↔ B ⊆ C)) |
30 | 29 | ancoms 439 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((v = C ∧ u = B) → (u
⊆ v
↔ B ⊆ C)) |
31 | | sseq12 3295 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((v = C ∧ u = B) → (v
⊆ u
↔ C ⊆ B)) |
32 | 30, 31 | orbi12d 690 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((v = C ∧ u = B) → ((u
⊆ v
∨ v ⊆ u) ↔
(B ⊆
C ∨
C ⊆
B))) |
33 | 32 | biimprcd 216 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((B ⊆ C ∨ C ⊆ B) → ((v =
C ∧
u = B)
→ (u ⊆ v ∨ v ⊆ u))) |
34 | 33 | expdimp 426 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((B ⊆ C ∨ C ⊆ B) ∧ v = C) →
(u = B
→ (u ⊆ v ∨ v ⊆ u))) |
35 | 34 | rexlimivw 2735 |
. . . . . . . . . . . . . . . . . . 19
⊢ (∃y ∈ A ((B ⊆ C ∨ C ⊆ B) ∧ v = C) →
(u = B
→ (u ⊆ v ∨ v ⊆ u))) |
36 | 35 | imp 418 |
. . . . . . . . . . . . . . . . . 18
⊢ ((∃y ∈ A ((B ⊆ C ∨ C ⊆ B) ∧ v = C) ∧ u = B) → (u
⊆ v
∨ v ⊆ u)) |
37 | 28, 36 | sylan 457 |
. . . . . . . . . . . . . . . . 17
⊢ (((∀y ∈ A (B ⊆ C ∨ C ⊆ B) ∧ ∃y ∈ A v = C) ∧ u = B) → (u
⊆ v
∨ v ⊆ u)) |
38 | 37 | an32s 779 |
. . . . . . . . . . . . . . . 16
⊢ (((∀y ∈ A (B ⊆ C ∨ C ⊆ B) ∧ u = B) ∧ ∃y ∈ A v = C) → (u
⊆ v
∨ v ⊆ u)) |
39 | 27, 38 | sylan2b 461 |
. . . . . . . . . . . . . . 15
⊢ (((∀y ∈ A (B ⊆ C ∨ C ⊆ B) ∧ u = B) ∧ v ∈ {z ∣ ∃x ∈ A z = B}) → (u
⊆ v
∨ v ⊆ u)) |
40 | 39 | ralrimiva 2698 |
. . . . . . . . . . . . . 14
⊢ ((∀y ∈ A (B ⊆ C ∨ C ⊆ B) ∧ u = B) →
∀v
∈ {z
∣ ∃x ∈ A z = B} (u ⊆ v ∨ v ⊆ u)) |
41 | 40 | adantll 694 |
. . . . . . . . . . . . 13
⊢ (((B:D–1-1→S
∧ ∀y ∈ A (B ⊆ C ∨ C ⊆ B)) ∧ u = B) →
∀v
∈ {z
∣ ∃x ∈ A z = B} (u ⊆ v ∨ v ⊆ u)) |
42 | 19, 41 | jca 518 |
. . . . . . . . . . . 12
⊢ (((B:D–1-1→S
∧ ∀y ∈ A (B ⊆ C ∨ C ⊆ B)) ∧ u = B) →
((Fun u ∧
Fun ◡u) ∧ ∀v ∈ {z ∣ ∃x ∈ A z = B} (u ⊆ v ∨ v ⊆ u))) |
43 | 42 | a1i 10 |
. . . . . . . . . . 11
⊢ (x ∈ A → (((B:D–1-1→S
∧ ∀y ∈ A (B ⊆ C ∨ C ⊆ B)) ∧ u = B) →
((Fun u ∧
Fun ◡u) ∧ ∀v ∈ {z ∣ ∃x ∈ A z = B} (u ⊆ v ∨ v ⊆ u)))) |
44 | 11, 43 | rexlimi 2732 |
. . . . . . . . . 10
⊢ (∃x ∈ A ((B:D–1-1→S
∧ ∀y ∈ A (B ⊆ C ∨ C ⊆ B)) ∧ u = B) →
((Fun u ∧
Fun ◡u) ∧ ∀v ∈ {z ∣ ∃x ∈ A z = B} (u ⊆ v ∨ v ⊆ u))) |
45 | 5, 44 | syl 15 |
. . . . . . . . 9
⊢ ((∀x ∈ A (B:D–1-1→S
∧ ∀y ∈ A (B ⊆ C ∨ C ⊆ B)) ∧ ∃x ∈ A u = B) →
((Fun u ∧
Fun ◡u) ∧ ∀v ∈ {z ∣ ∃x ∈ A z = B} (u ⊆ v ∨ v ⊆ u))) |
46 | 4, 45 | sylan2b 461 |
. . . . . . . 8
⊢ ((∀x ∈ A (B:D–1-1→S
∧ ∀y ∈ A (B ⊆ C ∨ C ⊆ B)) ∧ u ∈ {z ∣ ∃x ∈ A z = B}) →
((Fun u ∧
Fun ◡u) ∧ ∀v ∈ {z ∣ ∃x ∈ A z = B} (u ⊆ v ∨ v ⊆ u))) |
47 | 46 | ralrimiva 2698 |
. . . . . . 7
⊢ (∀x ∈ A (B:D–1-1→S
∧ ∀y ∈ A (B ⊆ C ∨ C ⊆ B)) → ∀u ∈ {z ∣ ∃x ∈ A z = B} ((Fun u ∧ Fun ◡u) ∧ ∀v ∈ {z ∣ ∃x ∈ A z = B} (u ⊆ v ∨ v ⊆ u))) |
48 | | fun11uni 5163 |
. . . . . . 7
⊢ (∀u ∈ {z ∣ ∃x ∈ A z = B} ((Fun u ∧ Fun ◡u) ∧ ∀v ∈ {z ∣ ∃x ∈ A z = B} (u ⊆ v ∨ v ⊆ u)) → (Fun ∪{z ∣ ∃x ∈ A z = B} ∧ Fun ◡∪{z ∣ ∃x ∈ A z = B})) |
49 | 47, 48 | syl 15 |
. . . . . 6
⊢ (∀x ∈ A (B:D–1-1→S
∧ ∀y ∈ A (B ⊆ C ∨ C ⊆ B)) → (Fun ∪{z ∣ ∃x ∈ A z = B} ∧ Fun ◡∪{z ∣ ∃x ∈ A z = B})) |
50 | 49 | simpld 445 |
. . . . 5
⊢ (∀x ∈ A (B:D–1-1→S
∧ ∀y ∈ A (B ⊆ C ∨ C ⊆ B)) → Fun ∪{z ∣ ∃x ∈ A z = B}) |
51 | | fun11iun.2 |
. . . . . . 7
⊢ B ∈
V |
52 | 51 | dfiun2 4002 |
. . . . . 6
⊢ ∪x ∈ A B = ∪{z ∣ ∃x ∈ A z = B} |
53 | 52 | funeqi 5129 |
. . . . 5
⊢ (Fun ∪x ∈ A B ↔ Fun ∪{z ∣ ∃x ∈ A z = B}) |
54 | 50, 53 | sylibr 203 |
. . . 4
⊢ (∀x ∈ A (B:D–1-1→S
∧ ∀y ∈ A (B ⊆ C ∨ C ⊆ B)) → Fun ∪x ∈ A B) |
55 | | nfra1 2665 |
. . . . . . 7
⊢ Ⅎx∀x ∈ A (B:D–1-1→S ∧ ∀y ∈ A (B ⊆ C ∨ C ⊆ B)) |
56 | | rsp 2675 |
. . . . . . . . 9
⊢ (∀x ∈ A (B:D–1-1→S
∧ ∀y ∈ A (B ⊆ C ∨ C ⊆ B)) → (x
∈ A
→ (B:D–1-1→S ∧ ∀y ∈ A (B ⊆ C ∨ C ⊆ B)))) |
57 | 56 | imp 418 |
. . . . . . . 8
⊢ ((∀x ∈ A (B:D–1-1→S
∧ ∀y ∈ A (B ⊆ C ∨ C ⊆ B)) ∧ x ∈ A) → (B:D–1-1→S
∧ ∀y ∈ A (B ⊆ C ∨ C ⊆ B))) |
58 | | eldm2 4900 |
. . . . . . . . . 10
⊢ (u ∈ dom B ↔ ∃v〈u, v〉 ∈ B) |
59 | | f1dm 5262 |
. . . . . . . . . . 11
⊢ (B:D–1-1→S
→ dom B = D) |
60 | 59 | eleq2d 2420 |
. . . . . . . . . 10
⊢ (B:D–1-1→S
→ (u ∈ dom B ↔
u ∈
D)) |
61 | 58, 60 | syl5bbr 250 |
. . . . . . . . 9
⊢ (B:D–1-1→S
→ (∃v〈u, v〉 ∈ B ↔ u ∈ D)) |
62 | 61 | adantr 451 |
. . . . . . . 8
⊢ ((B:D–1-1→S
∧ ∀y ∈ A (B ⊆ C ∨ C ⊆ B)) → (∃v〈u, v〉 ∈ B ↔
u ∈
D)) |
63 | 57, 62 | syl 15 |
. . . . . . 7
⊢ ((∀x ∈ A (B:D–1-1→S
∧ ∀y ∈ A (B ⊆ C ∨ C ⊆ B)) ∧ x ∈ A) → (∃v〈u, v〉 ∈ B ↔
u ∈
D)) |
64 | 55, 63 | rexbida 2630 |
. . . . . 6
⊢ (∀x ∈ A (B:D–1-1→S
∧ ∀y ∈ A (B ⊆ C ∨ C ⊆ B)) → (∃x ∈ A ∃v〈u, v〉 ∈ B ↔
∃x ∈ A u ∈ D)) |
65 | | eliun 3974 |
. . . . . . . 8
⊢ (〈u, v〉 ∈ ∪x ∈ A B ↔ ∃x ∈ A 〈u, v〉 ∈ B) |
66 | 65 | exbii 1582 |
. . . . . . 7
⊢ (∃v〈u, v〉 ∈ ∪x ∈ A B ↔ ∃v∃x ∈ A 〈u, v〉 ∈ B) |
67 | | eldm2 4900 |
. . . . . . 7
⊢ (u ∈ dom ∪x ∈ A B ↔ ∃v〈u, v〉 ∈ ∪x ∈ A B) |
68 | | rexcom4 2879 |
. . . . . . 7
⊢ (∃x ∈ A ∃v〈u, v〉 ∈ B ↔
∃v∃x ∈ A 〈u, v〉 ∈ B) |
69 | 66, 67, 68 | 3bitr4i 268 |
. . . . . 6
⊢ (u ∈ dom ∪x ∈ A B ↔ ∃x ∈ A ∃v〈u, v〉 ∈ B) |
70 | | eliun 3974 |
. . . . . 6
⊢ (u ∈ ∪x ∈ A D ↔ ∃x ∈ A u ∈ D) |
71 | 64, 69, 70 | 3bitr4g 279 |
. . . . 5
⊢ (∀x ∈ A (B:D–1-1→S
∧ ∀y ∈ A (B ⊆ C ∨ C ⊆ B)) → (u
∈ dom ∪x ∈ A B ↔ u ∈ ∪x ∈ A D)) |
72 | 71 | eqrdv 2351 |
. . . 4
⊢ (∀x ∈ A (B:D–1-1→S
∧ ∀y ∈ A (B ⊆ C ∨ C ⊆ B)) → dom ∪x ∈ A B = ∪x ∈ A D) |
73 | | df-fn 4791 |
. . . 4
⊢ (∪x ∈ A B Fn ∪x ∈ A D ↔ (Fun
∪x ∈ A B ∧ dom ∪x ∈ A B = ∪x ∈ A D)) |
74 | 54, 72, 73 | sylanbrc 645 |
. . 3
⊢ (∀x ∈ A (B:D–1-1→S
∧ ∀y ∈ A (B ⊆ C ∨ C ⊆ B)) → ∪x ∈ A B Fn ∪x ∈ A D) |
75 | 65 | exbii 1582 |
. . . . . 6
⊢ (∃u〈u, v〉 ∈ ∪x ∈ A B ↔ ∃u∃x ∈ A 〈u, v〉 ∈ B) |
76 | | elrn2 4898 |
. . . . . 6
⊢ (v ∈ ran ∪x ∈ A B ↔ ∃u〈u, v〉 ∈ ∪x ∈ A B) |
77 | | rexcom4 2879 |
. . . . . 6
⊢ (∃x ∈ A ∃u〈u, v〉 ∈ B ↔
∃u∃x ∈ A 〈u, v〉 ∈ B) |
78 | 75, 76, 77 | 3bitr4i 268 |
. . . . 5
⊢ (v ∈ ran ∪x ∈ A B ↔ ∃x ∈ A ∃u〈u, v〉 ∈ B) |
79 | | nfv 1619 |
. . . . . 6
⊢ Ⅎx v ∈ S |
80 | | elrn2 4898 |
. . . . . . . . 9
⊢ (v ∈ ran B ↔ ∃u〈u, v〉 ∈ B) |
81 | | f1f 5259 |
. . . . . . . . . . 11
⊢ (B:D–1-1→S
→ B:D–→S) |
82 | | frn 5229 |
. . . . . . . . . . 11
⊢ (B:D–→S
→ ran B ⊆ S) |
83 | 81, 82 | syl 15 |
. . . . . . . . . 10
⊢ (B:D–1-1→S
→ ran B ⊆ S) |
84 | 83 | sseld 3273 |
. . . . . . . . 9
⊢ (B:D–1-1→S
→ (v ∈ ran B →
v ∈
S)) |
85 | 80, 84 | syl5bir 209 |
. . . . . . . 8
⊢ (B:D–1-1→S
→ (∃u〈u, v〉 ∈ B → v ∈ S)) |
86 | 85 | adantr 451 |
. . . . . . 7
⊢ ((B:D–1-1→S
∧ ∀y ∈ A (B ⊆ C ∨ C ⊆ B)) → (∃u〈u, v〉 ∈ B →
v ∈
S)) |
87 | 56, 86 | syl6 29 |
. . . . . 6
⊢ (∀x ∈ A (B:D–1-1→S
∧ ∀y ∈ A (B ⊆ C ∨ C ⊆ B)) → (x
∈ A
→ (∃u〈u, v〉 ∈ B → v ∈ S))) |
88 | 55, 79, 87 | rexlimd 2736 |
. . . . 5
⊢ (∀x ∈ A (B:D–1-1→S
∧ ∀y ∈ A (B ⊆ C ∨ C ⊆ B)) → (∃x ∈ A ∃u〈u, v〉 ∈ B →
v ∈
S)) |
89 | 78, 88 | syl5bi 208 |
. . . 4
⊢ (∀x ∈ A (B:D–1-1→S
∧ ∀y ∈ A (B ⊆ C ∨ C ⊆ B)) → (v
∈ ran ∪x ∈ A B → v ∈ S)) |
90 | 89 | ssrdv 3279 |
. . 3
⊢ (∀x ∈ A (B:D–1-1→S
∧ ∀y ∈ A (B ⊆ C ∨ C ⊆ B)) → ran ∪x ∈ A B ⊆ S) |
91 | | df-f 4792 |
. . 3
⊢ (∪x ∈ A B:∪x ∈ A D–→S
↔ (∪x ∈ A B Fn ∪x ∈ A D ∧ ran ∪x ∈ A B ⊆ S)) |
92 | 74, 90, 91 | sylanbrc 645 |
. 2
⊢ (∀x ∈ A (B:D–1-1→S
∧ ∀y ∈ A (B ⊆ C ∨ C ⊆ B)) → ∪x ∈ A B:∪x ∈ A D–→S) |
93 | 49 | simprd 449 |
. . 3
⊢ (∀x ∈ A (B:D–1-1→S
∧ ∀y ∈ A (B ⊆ C ∨ C ⊆ B)) → Fun ◡∪{z ∣ ∃x ∈ A z = B}) |
94 | 52 | cnveqi 4888 |
. . . 4
⊢ ◡∪x ∈ A B = ◡∪{z ∣ ∃x ∈ A z = B} |
95 | 94 | funeqi 5129 |
. . 3
⊢ (Fun ◡∪x ∈ A B ↔ Fun
◡∪{z ∣ ∃x ∈ A z = B}) |
96 | 93, 95 | sylibr 203 |
. 2
⊢ (∀x ∈ A (B:D–1-1→S
∧ ∀y ∈ A (B ⊆ C ∨ C ⊆ B)) → Fun ◡∪x ∈ A B) |
97 | | df-f1 4793 |
. 2
⊢ (∪x ∈ A B:∪x ∈ A D–1-1→S
↔ (∪x ∈ A B:∪x ∈ A D–→S
∧ Fun ◡∪x ∈ A B)) |
98 | 92, 96, 97 | sylanbrc 645 |
1
⊢ (∀x ∈ A (B:D–1-1→S
∧ ∀y ∈ A (B ⊆ C ∨ C ⊆ B)) → ∪x ∈ A B:∪x ∈ A D–1-1→S) |