NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  frn GIF version

Theorem frn 5229
Description: The range of a mapping. (Contributed by set.mm contributors, 3-Aug-1994.)
Assertion
Ref Expression
frn (F:A–→B → ran F B)

Proof of Theorem frn
StepHypRef Expression
1 df-f 4792 . 2 (F:A–→B ↔ (F Fn A ran F B))
21simprbi 450 1 (F:A–→B → ran F B)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wss 3258  ran crn 4774   Fn wfn 4777  –→wf 4778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-f 4792
This theorem is referenced by:  fssxp  5233  fcoi2  5242  fcnvres  5244  fimacnvdisj  5245  f00  5250  foconst  5281  fun11iun  5306  fimacnv  5412  ffvelrn  5416  fnfvrnss  5430  map0b  6025  mapsn  6027  enprmaplem3  6079  dflec3  6222
  Copyright terms: Public domain W3C validator