NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  f00 GIF version

Theorem f00 5250
Description: A class is a function with empty codomain iff it and its domain are empty. (Contributed by set.mm contributors, 10-Dec-2003.)
Assertion
Ref Expression
f00 (F:A–→ ↔ (F = A = ))

Proof of Theorem f00
StepHypRef Expression
1 ffun 5226 . . . . 5 (F:A–→ → Fun F)
2 frn 5229 . . . . . . 7 (F:A–→ → ran F )
3 ss0 3582 . . . . . . 7 (ran F → ran F = )
42, 3syl 15 . . . . . 6 (F:A–→ → ran F = )
5 dm0rn0 4922 . . . . . 6 (dom F = ↔ ran F = )
64, 5sylibr 203 . . . . 5 (F:A–→ → dom F = )
7 df-fn 4791 . . . . 5 (F Fn ↔ (Fun F dom F = ))
81, 6, 7sylanbrc 645 . . . 4 (F:A–→F Fn )
9 fn0 5203 . . . 4 (F Fn F = )
108, 9sylib 188 . . 3 (F:A–→F = )
11 fdm 5227 . . . 4 (F:A–→ → dom F = A)
1211, 6eqtr3d 2387 . . 3 (F:A–→A = )
1310, 12jca 518 . 2 (F:A–→ → (F = A = ))
14 f0 5249 . . 3 :–→
15 feq1 5211 . . . 4 (F = → (F:A–→:A–→))
16 feq2 5212 . . . 4 (A = → (:A–→:–→))
1715, 16sylan9bb 680 . . 3 ((F = A = ) → (F:A–→:–→))
1814, 17mpbiri 224 . 2 ((F = A = ) → F:A–→)
1913, 18impbii 180 1 (F:A–→ ↔ (F = A = ))
Colors of variables: wff setvar class
Syntax hints:  wb 176   wa 358   = wceq 1642   wss 3258  c0 3551  dom cdm 4773  ran crn 4774  Fun wfun 4776   Fn wfn 4777  –→wf 4778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-co 4727  df-ima 4728  df-cnv 4786  df-rn 4787  df-dm 4788  df-fun 4790  df-fn 4791  df-f 4792
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator