New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > f00 | GIF version |
Description: A class is a function with empty codomain iff it and its domain are empty. (Contributed by set.mm contributors, 10-Dec-2003.) |
Ref | Expression |
---|---|
f00 | ⊢ (F:A–→∅ ↔ (F = ∅ ∧ A = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffun 5226 | . . . . 5 ⊢ (F:A–→∅ → Fun F) | |
2 | frn 5229 | . . . . . . 7 ⊢ (F:A–→∅ → ran F ⊆ ∅) | |
3 | ss0 3582 | . . . . . . 7 ⊢ (ran F ⊆ ∅ → ran F = ∅) | |
4 | 2, 3 | syl 15 | . . . . . 6 ⊢ (F:A–→∅ → ran F = ∅) |
5 | dm0rn0 4922 | . . . . . 6 ⊢ (dom F = ∅ ↔ ran F = ∅) | |
6 | 4, 5 | sylibr 203 | . . . . 5 ⊢ (F:A–→∅ → dom F = ∅) |
7 | df-fn 4791 | . . . . 5 ⊢ (F Fn ∅ ↔ (Fun F ∧ dom F = ∅)) | |
8 | 1, 6, 7 | sylanbrc 645 | . . . 4 ⊢ (F:A–→∅ → F Fn ∅) |
9 | fn0 5203 | . . . 4 ⊢ (F Fn ∅ ↔ F = ∅) | |
10 | 8, 9 | sylib 188 | . . 3 ⊢ (F:A–→∅ → F = ∅) |
11 | fdm 5227 | . . . 4 ⊢ (F:A–→∅ → dom F = A) | |
12 | 11, 6 | eqtr3d 2387 | . . 3 ⊢ (F:A–→∅ → A = ∅) |
13 | 10, 12 | jca 518 | . 2 ⊢ (F:A–→∅ → (F = ∅ ∧ A = ∅)) |
14 | f0 5249 | . . 3 ⊢ ∅:∅–→∅ | |
15 | feq1 5211 | . . . 4 ⊢ (F = ∅ → (F:A–→∅ ↔ ∅:A–→∅)) | |
16 | feq2 5212 | . . . 4 ⊢ (A = ∅ → (∅:A–→∅ ↔ ∅:∅–→∅)) | |
17 | 15, 16 | sylan9bb 680 | . . 3 ⊢ ((F = ∅ ∧ A = ∅) → (F:A–→∅ ↔ ∅:∅–→∅)) |
18 | 14, 17 | mpbiri 224 | . 2 ⊢ ((F = ∅ ∧ A = ∅) → F:A–→∅) |
19 | 13, 18 | impbii 180 | 1 ⊢ (F:A–→∅ ↔ (F = ∅ ∧ A = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 = wceq 1642 ⊆ wss 3258 ∅c0 3551 dom cdm 4773 ran crn 4774 Fun wfun 4776 Fn wfn 4777 –→wf 4778 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-co 4727 df-ima 4728 df-cnv 4786 df-rn 4787 df-dm 4788 df-fun 4790 df-fn 4791 df-f 4792 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |