New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > df-f | GIF version |
Description: Define a function (mapping) with domain and codomain. Definition 6.15(3) of [TakeutiZaring] p. 27. For alternate definitions, see dff2 5420, dff3 5421, and dff4 5422. (Contributed by SF, 5-Jan-2015.) |
Ref | Expression |
---|---|
df-f | ⊢ (F:A–→B ↔ (F Fn A ∧ ran F ⊆ B)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class A | |
2 | cB | . . 3 class B | |
3 | cF | . . 3 class F | |
4 | 1, 2, 3 | wf 4778 | . 2 wff F:A–→B |
5 | 3, 1 | wfn 4777 | . . 3 wff F Fn A |
6 | 3 | crn 4774 | . . . 4 class ran F |
7 | 6, 2 | wss 3258 | . . 3 wff ran F ⊆ B |
8 | 5, 7 | wa 358 | . 2 wff (F Fn A ∧ ran F ⊆ B) |
9 | 4, 8 | wb 176 | 1 wff (F:A–→B ↔ (F Fn A ∧ ran F ⊆ B)) |
Colors of variables: wff setvar class |
This definition is referenced by: feq1 5211 feq2 5212 feq3 5213 nff 5222 ffn 5224 dffn2 5225 frn 5229 dffn3 5230 fss 5231 fco 5232 funssxp 5234 fun 5237 fnfco 5238 fssres 5239 fint 5246 fin 5247 f0 5249 fconst 5251 f1funfun 5264 fof 5270 dff1o2 5292 fun11iun 5306 ffoss 5315 dff2 5420 dff3 5421 ffnfv 5428 ffvresb 5432 fpr 5438 dff1o6 5476 fmpt 5693 fmpt2d 5696 mapexi 6004 map0e 6024 ovcelem1 6172 ceex 6175 fce 6189 sbthlem1 6204 |
Copyright terms: Public domain | W3C validator |