New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > fcnvres | GIF version |
Description: The converse of a restriction of a function. (Contributed by set.mm contributors, 26-Mar-1998.) |
Ref | Expression |
---|---|
fcnvres | ⊢ (F:A–→B → ◡(F ↾ A) = (◡F ↾ B)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 4641 | . . . . 5 ⊢ (xFy ↔ 〈x, y〉 ∈ F) | |
2 | ffn 5224 | . . . . . . 7 ⊢ (F:A–→B → F Fn A) | |
3 | fnbr 5186 | . . . . . . 7 ⊢ ((F Fn A ∧ xFy) → x ∈ A) | |
4 | 2, 3 | sylan 457 | . . . . . 6 ⊢ ((F:A–→B ∧ xFy) → x ∈ A) |
5 | frn 5229 | . . . . . . 7 ⊢ (F:A–→B → ran F ⊆ B) | |
6 | brelrn 4961 | . . . . . . 7 ⊢ (xFy → y ∈ ran F) | |
7 | ssel2 3269 | . . . . . . 7 ⊢ ((ran F ⊆ B ∧ y ∈ ran F) → y ∈ B) | |
8 | 5, 6, 7 | syl2an 463 | . . . . . 6 ⊢ ((F:A–→B ∧ xFy) → y ∈ B) |
9 | 4, 8 | 2thd 231 | . . . . 5 ⊢ ((F:A–→B ∧ xFy) → (x ∈ A ↔ y ∈ B)) |
10 | 1, 9 | sylan2br 462 | . . . 4 ⊢ ((F:A–→B ∧ 〈x, y〉 ∈ F) → (x ∈ A ↔ y ∈ B)) |
11 | 10 | pm5.32da 622 | . . 3 ⊢ (F:A–→B → ((〈x, y〉 ∈ F ∧ x ∈ A) ↔ (〈x, y〉 ∈ F ∧ y ∈ B))) |
12 | opelcnv 4894 | . . . 4 ⊢ (〈y, x〉 ∈ ◡(F ↾ A) ↔ 〈x, y〉 ∈ (F ↾ A)) | |
13 | opelres 4951 | . . . 4 ⊢ (〈x, y〉 ∈ (F ↾ A) ↔ (〈x, y〉 ∈ F ∧ x ∈ A)) | |
14 | 12, 13 | bitri 240 | . . 3 ⊢ (〈y, x〉 ∈ ◡(F ↾ A) ↔ (〈x, y〉 ∈ F ∧ x ∈ A)) |
15 | opelres 4951 | . . . 4 ⊢ (〈y, x〉 ∈ (◡F ↾ B) ↔ (〈y, x〉 ∈ ◡F ∧ y ∈ B)) | |
16 | opelcnv 4894 | . . . . 5 ⊢ (〈y, x〉 ∈ ◡F ↔ 〈x, y〉 ∈ F) | |
17 | 16 | anbi1i 676 | . . . 4 ⊢ ((〈y, x〉 ∈ ◡F ∧ y ∈ B) ↔ (〈x, y〉 ∈ F ∧ y ∈ B)) |
18 | 15, 17 | bitri 240 | . . 3 ⊢ (〈y, x〉 ∈ (◡F ↾ B) ↔ (〈x, y〉 ∈ F ∧ y ∈ B)) |
19 | 11, 14, 18 | 3bitr4g 279 | . 2 ⊢ (F:A–→B → (〈y, x〉 ∈ ◡(F ↾ A) ↔ 〈y, x〉 ∈ (◡F ↾ B))) |
20 | 19 | eqrelrdv 4853 | 1 ⊢ (F:A–→B → ◡(F ↾ A) = (◡F ↾ B)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 = wceq 1642 ∈ wcel 1710 ⊆ wss 3258 〈cop 4562 class class class wbr 4640 ◡ccnv 4772 ran crn 4774 ↾ cres 4775 Fn wfn 4777 –→wf 4778 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-ima 4728 df-xp 4785 df-cnv 4786 df-rn 4787 df-dm 4788 df-res 4789 df-fn 4791 df-f 4792 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |