NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  simprbi GIF version

Theorem simprbi 450
Description: Deduction eliminating a conjunct. (Contributed by NM, 27-May-1998.)
Hypothesis
Ref Expression
simprbi.1 (φ ↔ (ψ χ))
Assertion
Ref Expression
simprbi (φχ)

Proof of Theorem simprbi
StepHypRef Expression
1 simprbi.1 . . 3 (φ ↔ (ψ χ))
21biimpi 186 . 2 (φ → (ψ χ))
32simprd 449 1 (φχ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  sb1  1651  eumo  2244  2eu1  2284  reurmo  2827  pssne  3366  pssn2lp  3371  ssnpss  3373  eldifn  3390  rabsnt  3798  eldifsni  3841  unimax  3926  ssintub  3945  dfnnc2  4396  nnsucelr  4429  ssfin  4471  vfinspsslem1  4551  opeliunxp  4821  opeldm  4911  dmsnopss  5068  fndm  5183  frn  5229  f1ss  5263  forn  5273  f1f1orn  5298  f1orescnv  5302  f1imacnv  5303  fun11iun  5306  tz6.12-2  5347  foelrn  5426  f1fveq  5474  isorel  5490  isoini2  5499  2ndfo  5507  fovcl  5589  weds  5939  ertr  5955  ertrd  5956  en0  6043  enpw1  6063  ncdisjun  6137  nchoicelem8  6297  nchoicelem15  6304  frecxp  6315  dmfrec  6317  fnfreclem2  6319
  Copyright terms: Public domain W3C validator