New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > simprbi | GIF version |
Description: Deduction eliminating a conjunct. (Contributed by NM, 27-May-1998.) |
Ref | Expression |
---|---|
simprbi.1 | ⊢ (φ ↔ (ψ ∧ χ)) |
Ref | Expression |
---|---|
simprbi | ⊢ (φ → χ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprbi.1 | . . 3 ⊢ (φ ↔ (ψ ∧ χ)) | |
2 | 1 | biimpi 186 | . 2 ⊢ (φ → (ψ ∧ χ)) |
3 | 2 | simprd 449 | 1 ⊢ (φ → χ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: sb1 1651 eumo 2244 2eu1 2284 reurmo 2827 pssne 3366 pssn2lp 3371 ssnpss 3373 eldifn 3390 rabsnt 3798 eldifsni 3841 unimax 3926 ssintub 3945 dfnnc2 4396 nnsucelr 4429 ssfin 4471 vfinspsslem1 4551 opeliunxp 4821 opeldm 4911 dmsnopss 5068 fndm 5183 frn 5229 f1ss 5263 forn 5273 f1f1orn 5298 f1orescnv 5302 f1imacnv 5303 fun11iun 5306 tz6.12-2 5347 foelrn 5426 f1fveq 5474 isorel 5490 isoini2 5499 2ndfo 5507 fovcl 5589 weds 5939 ertr 5955 ertrd 5956 en0 6043 enpw1 6063 ncdisjun 6137 nchoicelem8 6297 nchoicelem15 6304 frecxp 6315 dmfrec 6317 fnfreclem2 6319 |
Copyright terms: Public domain | W3C validator |