New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > xorbi12i | GIF version |
Description: Equality property for XOR. (Contributed by Mario Carneiro, 4-Sep-2016.) |
Ref | Expression |
---|---|
xorbi12.1 | ⊢ (φ ↔ ψ) |
xorbi12.2 | ⊢ (χ ↔ θ) |
Ref | Expression |
---|---|
xorbi12i | ⊢ ((φ ⊻ χ) ↔ (ψ ⊻ θ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xorbi12.1 | . . . 4 ⊢ (φ ↔ ψ) | |
2 | xorbi12.2 | . . . 4 ⊢ (χ ↔ θ) | |
3 | 1, 2 | bibi12i 306 | . . 3 ⊢ ((φ ↔ χ) ↔ (ψ ↔ θ)) |
4 | 3 | notbii 287 | . 2 ⊢ (¬ (φ ↔ χ) ↔ ¬ (ψ ↔ θ)) |
5 | df-xor 1305 | . 2 ⊢ ((φ ⊻ χ) ↔ ¬ (φ ↔ χ)) | |
6 | df-xor 1305 | . 2 ⊢ ((ψ ⊻ θ) ↔ ¬ (ψ ↔ θ)) | |
7 | 4, 5, 6 | 3bitr4i 268 | 1 ⊢ ((φ ⊻ χ) ↔ (ψ ⊻ θ)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 176 ⊻ wxo 1304 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-xor 1305 |
This theorem is referenced by: hadcoma 1388 hadcomb 1389 hadnot 1393 |
Copyright terms: Public domain | W3C validator |