New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > alcom | GIF version |
Description: Theorem 19.5 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
alcom | ⊢ (∀x∀yφ ↔ ∀y∀xφ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-7 1734 | . 2 ⊢ (∀x∀yφ → ∀y∀xφ) | |
2 | ax-7 1734 | . 2 ⊢ (∀y∀xφ → ∀x∀yφ) | |
3 | 1, 2 | impbii 180 | 1 ⊢ (∀x∀yφ ↔ ∀y∀xφ) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∀wal 1540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-7 1734 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: alrot3 1738 excom 1741 sbcom 2089 sbnf2 2108 sbcom2 2114 sbal2 2134 2mo 2282 2eu4 2287 ralcomf 2769 unissb 3921 dfiin2g 4000 eqpw1 4162 pw111 4170 insklem 4304 ssfin 4470 ssopr 4846 cotr 5026 cnvsym 5027 fun11 5159 dff13 5471 |
Copyright terms: Public domain | W3C validator |