New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > alcom | GIF version |
Description: Theorem 19.5 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
alcom | ⊢ (∀x∀yφ ↔ ∀y∀xφ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-7 1734 | . 2 ⊢ (∀x∀yφ → ∀y∀xφ) | |
2 | ax-7 1734 | . 2 ⊢ (∀y∀xφ → ∀x∀yφ) | |
3 | 1, 2 | impbii 180 | 1 ⊢ (∀x∀yφ ↔ ∀y∀xφ) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∀wal 1540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-7 1734 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: alrot3 1738 excom 1741 sbcom 2089 sbnf2 2108 sbcom2 2114 sbal2 2134 2mo 2282 2eu4 2287 ralcomf 2770 unissb 3922 dfiin2g 4001 eqpw1 4163 pw111 4171 insklem 4305 ssfin 4471 ssopr 4847 cotr 5027 cnvsym 5028 fun11 5160 dff13 5472 |
Copyright terms: Public domain | W3C validator |