NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  alcom GIF version

Theorem alcom 1737
Description: Theorem 19.5 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
alcom (xyφyxφ)

Proof of Theorem alcom
StepHypRef Expression
1 ax-7 1734 . 2 (xyφyxφ)
2 ax-7 1734 . 2 (yxφxyφ)
31, 2impbii 180 1 (xyφyxφ)
Colors of variables: wff setvar class
Syntax hints:  wb 176  wal 1540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-7 1734
This theorem depends on definitions:  df-bi 177
This theorem is referenced by:  alrot3  1738  excom  1741  sbcom  2089  sbnf2  2108  sbcom2  2114  sbal2  2134  2mo  2282  2eu4  2287  ralcomf  2770  unissb  3922  dfiin2g  4001  eqpw1  4163  pw111  4171  insklem  4305  ssfin  4471  ssopr  4847  cotr  5027  cnvsym  5028  fun11  5160  dff13  5472
  Copyright terms: Public domain W3C validator