NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  hbex GIF version

Theorem hbex 1841
Description: If x is not free in φ, it is not free in yφ. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
hbex.1 (φxφ)
Assertion
Ref Expression
hbex (yφxyφ)

Proof of Theorem hbex
StepHypRef Expression
1 df-ex 1542 . 2 (yφ ↔ ¬ y ¬ φ)
2 hbex.1 . . . . 5 (φxφ)
32hbn 1776 . . . 4 φx ¬ φ)
43hbal 1736 . . 3 (y ¬ φxy ¬ φ)
54hbn 1776 . 2 y ¬ φx ¬ y ¬ φ)
61, 5hbxfrbi 1568 1 (yφxyφ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1540  wex 1541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746
This theorem depends on definitions:  df-bi 177  df-ex 1542
This theorem is referenced by:  nfex  1843  19.12OLD  1848  hboprab2  5561  hboprab3  5562  hboprab  5563
  Copyright terms: Public domain W3C validator