New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > hbex | GIF version |
Description: If x is not free in φ, it is not free in ∃yφ. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
hbex.1 | ⊢ (φ → ∀xφ) |
Ref | Expression |
---|---|
hbex | ⊢ (∃yφ → ∀x∃yφ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ex 1542 | . 2 ⊢ (∃yφ ↔ ¬ ∀y ¬ φ) | |
2 | hbex.1 | . . . . 5 ⊢ (φ → ∀xφ) | |
3 | 2 | hbn 1776 | . . . 4 ⊢ (¬ φ → ∀x ¬ φ) |
4 | 3 | hbal 1736 | . . 3 ⊢ (∀y ¬ φ → ∀x∀y ¬ φ) |
5 | 4 | hbn 1776 | . 2 ⊢ (¬ ∀y ¬ φ → ∀x ¬ ∀y ¬ φ) |
6 | 1, 5 | hbxfrbi 1568 | 1 ⊢ (∃yφ → ∀x∃yφ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1540 ∃wex 1541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-ex 1542 |
This theorem is referenced by: nfex 1843 19.12OLD 1848 hboprab2 5561 hboprab3 5562 hboprab 5563 |
Copyright terms: Public domain | W3C validator |