New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > hbral | GIF version |
Description: Bound-variable hypothesis builder for restricted quantification. (Contributed by NM, 1-Sep-1999.) (Revised by David Abernethy, 13-Dec-2009.) |
Ref | Expression |
---|---|
hbral.1 | ⊢ (y ∈ A → ∀x y ∈ A) |
hbral.2 | ⊢ (φ → ∀xφ) |
Ref | Expression |
---|---|
hbral | ⊢ (∀y ∈ A φ → ∀x∀y ∈ A φ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 2620 | . 2 ⊢ (∀y ∈ A φ ↔ ∀y(y ∈ A → φ)) | |
2 | hbral.1 | . . . 4 ⊢ (y ∈ A → ∀x y ∈ A) | |
3 | hbral.2 | . . . 4 ⊢ (φ → ∀xφ) | |
4 | 2, 3 | hbim 1817 | . . 3 ⊢ ((y ∈ A → φ) → ∀x(y ∈ A → φ)) |
5 | 4 | hbal 1736 | . 2 ⊢ (∀y(y ∈ A → φ) → ∀x∀y(y ∈ A → φ)) |
6 | 1, 5 | hbxfrbi 1568 | 1 ⊢ (∀y ∈ A φ → ∀x∀y ∈ A φ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1540 ∈ wcel 1710 ∀wral 2615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-ex 1542 df-nf 1545 df-ral 2620 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |