NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ianor GIF version

Theorem ianor 474
Description: Negated conjunction in terms of disjunction (De Morgan's law). Theorem *4.51 of [WhiteheadRussell] p. 120. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 13-May-2011.)
Assertion
Ref Expression
ianor (¬ (φ ψ) ↔ (¬ φ ¬ ψ))

Proof of Theorem ianor
StepHypRef Expression
1 imnan 411 . 2 ((φ → ¬ ψ) ↔ ¬ (φ ψ))
2 pm4.62 408 . 2 ((φ → ¬ ψ) ↔ (¬ φ ¬ ψ))
31, 2bitr3i 242 1 (¬ (φ ψ) ↔ (¬ φ ¬ ψ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 176   wo 357   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360
This theorem is referenced by:  anor  475  3anor  948  cadnot  1394  19.33b  1608  neorian  2604  indifdir  3512  xpeq0  5047  imadif  5172  addceq0  6220
  Copyright terms: Public domain W3C validator