New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ianor | GIF version |
Description: Negated conjunction in terms of disjunction (De Morgan's law). Theorem *4.51 of [WhiteheadRussell] p. 120. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 13-May-2011.) |
Ref | Expression |
---|---|
ianor | ⊢ (¬ (φ ∧ ψ) ↔ (¬ φ ∨ ¬ ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imnan 411 | . 2 ⊢ ((φ → ¬ ψ) ↔ ¬ (φ ∧ ψ)) | |
2 | pm4.62 408 | . 2 ⊢ ((φ → ¬ ψ) ↔ (¬ φ ∨ ¬ ψ)) | |
3 | 1, 2 | bitr3i 242 | 1 ⊢ (¬ (φ ∧ ψ) ↔ (¬ φ ∨ ¬ ψ)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∨ wo 357 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 |
This theorem is referenced by: anor 475 3anor 948 cadnot 1394 19.33b 1608 neorian 2604 indifdir 3512 xpeq0 5047 imadif 5172 addceq0 6220 |
Copyright terms: Public domain | W3C validator |