| Step | Hyp | Ref
| Expression |
| 1 | | pm3.24 852 |
. . . . . . . 8
⊢ ¬ (x ∈ C ∧ ¬ x ∈ C) |
| 2 | 1 | intnan 880 |
. . . . . . 7
⊢ ¬ (x ∈ A ∧ (x ∈ C ∧ ¬ x ∈ C)) |
| 3 | | anass 630 |
. . . . . . 7
⊢ (((x ∈ A ∧ x ∈ C) ∧ ¬ x ∈ C) ↔ (x
∈ A ∧ (x ∈ C ∧ ¬ x ∈ C))) |
| 4 | 2, 3 | mtbir 290 |
. . . . . 6
⊢ ¬ ((x ∈ A ∧ x ∈ C) ∧ ¬ x ∈ C) |
| 5 | 4 | biorfi 396 |
. . . . 5
⊢ (((x ∈ A ∧ x ∈ C) ∧ ¬ x ∈ B) ↔ (((x
∈ A ∧ x ∈ C) ∧ ¬ x ∈ B) ∨ ((x ∈ A ∧ x ∈ C) ∧ ¬ x ∈ C))) |
| 6 | | an32 773 |
. . . . 5
⊢ (((x ∈ A ∧ ¬ x ∈ B) ∧ x ∈ C) ↔ ((x
∈ A ∧ x ∈ C) ∧ ¬ x ∈ B)) |
| 7 | | andi 837 |
. . . . 5
⊢ (((x ∈ A ∧ x ∈ C) ∧ (¬
x ∈
B ∨ ¬
x ∈
C)) ↔ (((x ∈ A ∧ x ∈ C) ∧ ¬ x ∈ B) ∨ ((x ∈ A ∧ x ∈ C) ∧ ¬ x ∈ C))) |
| 8 | 5, 6, 7 | 3bitr4i 268 |
. . . 4
⊢ (((x ∈ A ∧ ¬ x ∈ B) ∧ x ∈ C) ↔ ((x
∈ A ∧ x ∈ C) ∧ (¬ x ∈ B ∨ ¬ x ∈ C))) |
| 9 | | ianor 474 |
. . . . 5
⊢ (¬ (x ∈ B ∧ x ∈ C) ↔ (¬ x ∈ B ∨ ¬ x ∈ C)) |
| 10 | 9 | anbi2i 675 |
. . . 4
⊢ (((x ∈ A ∧ x ∈ C) ∧ ¬
(x ∈
B ∧
x ∈
C)) ↔ ((x ∈ A ∧ x ∈ C) ∧ (¬
x ∈
B ∨ ¬
x ∈
C))) |
| 11 | 8, 10 | bitr4i 243 |
. . 3
⊢ (((x ∈ A ∧ ¬ x ∈ B) ∧ x ∈ C) ↔ ((x
∈ A ∧ x ∈ C) ∧ ¬ (x ∈ B ∧ x ∈ C))) |
| 12 | | elin 3220 |
. . . 4
⊢ (x ∈ ((A ∖ B) ∩ C)
↔ (x ∈ (A ∖ B) ∧ x ∈ C)) |
| 13 | | eldif 3222 |
. . . . 5
⊢ (x ∈ (A ∖ B) ↔ (x
∈ A ∧ ¬ x ∈ B)) |
| 14 | 13 | anbi1i 676 |
. . . 4
⊢ ((x ∈ (A ∖ B) ∧ x ∈ C) ↔ ((x
∈ A ∧ ¬ x ∈ B) ∧ x ∈ C)) |
| 15 | 12, 14 | bitri 240 |
. . 3
⊢ (x ∈ ((A ∖ B) ∩ C)
↔ ((x ∈ A ∧ ¬ x ∈ B) ∧ x ∈ C)) |
| 16 | | eldif 3222 |
. . . 4
⊢ (x ∈ ((A ∩ C) ∖ (B ∩
C)) ↔ (x ∈ (A ∩ C) ∧ ¬ x ∈ (B ∩
C))) |
| 17 | | elin 3220 |
. . . . 5
⊢ (x ∈ (A ∩ C)
↔ (x ∈ A ∧ x ∈ C)) |
| 18 | | elin 3220 |
. . . . . 6
⊢ (x ∈ (B ∩ C)
↔ (x ∈ B ∧ x ∈ C)) |
| 19 | 18 | notbii 287 |
. . . . 5
⊢ (¬ x ∈ (B ∩ C)
↔ ¬ (x ∈ B ∧ x ∈ C)) |
| 20 | 17, 19 | anbi12i 678 |
. . . 4
⊢ ((x ∈ (A ∩ C) ∧ ¬ x ∈ (B ∩
C)) ↔ ((x ∈ A ∧ x ∈ C) ∧ ¬
(x ∈
B ∧
x ∈
C))) |
| 21 | 16, 20 | bitri 240 |
. . 3
⊢ (x ∈ ((A ∩ C) ∖ (B ∩
C)) ↔ ((x ∈ A ∧ x ∈ C) ∧ ¬
(x ∈
B ∧
x ∈
C))) |
| 22 | 11, 15, 21 | 3bitr4i 268 |
. 2
⊢ (x ∈ ((A ∖ B) ∩ C)
↔ x ∈ ((A ∩
C) ∖
(B ∩ C))) |
| 23 | 22 | eqriv 2350 |
1
⊢ ((A ∖ B) ∩ C) =
((A ∩ C) ∖ (B ∩ C)) |