Step | Hyp | Ref
| Expression |
1 | | anandir 802 |
. . . . . . 7
⊢ (((x ∈ A ∧ ¬ x ∈ B) ∧ xFy) ↔ ((x
∈ A ∧ xFy) ∧ (¬ x ∈ B ∧ xFy))) |
2 | 1 | exbii 1582 |
. . . . . 6
⊢ (∃x((x ∈ A ∧ ¬ x ∈ B) ∧ xFy) ↔ ∃x((x ∈ A ∧ xFy) ∧ (¬
x ∈
B ∧
xFy))) |
3 | | 19.40 1609 |
. . . . . 6
⊢ (∃x((x ∈ A ∧ xFy) ∧ (¬
x ∈
B ∧
xFy)) →
(∃x(x ∈ A ∧ xFy) ∧ ∃x(¬ x ∈ B ∧ xFy))) |
4 | 2, 3 | sylbi 187 |
. . . . 5
⊢ (∃x((x ∈ A ∧ ¬ x ∈ B) ∧ xFy) → (∃x(x ∈ A ∧ xFy) ∧ ∃x(¬
x ∈
B ∧
xFy))) |
5 | | nfv 1619 |
. . . . . . . . . 10
⊢ ℲxFun ◡F |
6 | | nfe1 1732 |
. . . . . . . . . 10
⊢ Ⅎx∃x(xFy ∧ ¬ x ∈ B) |
7 | 5, 6 | nfan 1824 |
. . . . . . . . 9
⊢ Ⅎx(Fun ◡F ∧ ∃x(xFy ∧ ¬ x ∈ B)) |
8 | | funmo 5126 |
. . . . . . . . . . . . 13
⊢ (Fun ◡F →
∃*x
y◡Fx) |
9 | | brcnv 4893 |
. . . . . . . . . . . . . 14
⊢ (y◡Fx ↔
xFy) |
10 | 9 | mobii 2240 |
. . . . . . . . . . . . 13
⊢ (∃*x y◡Fx ↔ ∃*x xFy) |
11 | 8, 10 | sylib 188 |
. . . . . . . . . . . 12
⊢ (Fun ◡F →
∃*x
xFy) |
12 | | mopick 2266 |
. . . . . . . . . . . 12
⊢ ((∃*x xFy ∧ ∃x(xFy ∧ ¬ x ∈ B)) → (xFy → ¬ x
∈ B)) |
13 | 11, 12 | sylan 457 |
. . . . . . . . . . 11
⊢ ((Fun ◡F ∧ ∃x(xFy ∧ ¬ x ∈ B)) →
(xFy → ¬
x ∈
B)) |
14 | 13 | con2d 107 |
. . . . . . . . . 10
⊢ ((Fun ◡F ∧ ∃x(xFy ∧ ¬ x ∈ B)) →
(x ∈
B → ¬ xFy)) |
15 | | imnan 411 |
. . . . . . . . . 10
⊢ ((x ∈ B → ¬ xFy) ↔ ¬ (x ∈ B ∧ xFy)) |
16 | 14, 15 | sylib 188 |
. . . . . . . . 9
⊢ ((Fun ◡F ∧ ∃x(xFy ∧ ¬ x ∈ B)) →
¬ (x ∈ B ∧ xFy)) |
17 | 7, 16 | alrimi 1765 |
. . . . . . . 8
⊢ ((Fun ◡F ∧ ∃x(xFy ∧ ¬ x ∈ B)) →
∀x
¬ (x ∈ B ∧ xFy)) |
18 | 17 | ex 423 |
. . . . . . 7
⊢ (Fun ◡F →
(∃x(xFy ∧ ¬ x ∈ B) →
∀x
¬ (x ∈ B ∧ xFy))) |
19 | | exancom 1586 |
. . . . . . 7
⊢ (∃x(xFy ∧ ¬ x ∈ B) ↔ ∃x(¬
x ∈
B ∧
xFy)) |
20 | | alnex 1543 |
. . . . . . 7
⊢ (∀x ¬
(x ∈
B ∧
xFy) ↔ ¬
∃x(x ∈ B ∧ xFy)) |
21 | 18, 19, 20 | 3imtr3g 260 |
. . . . . 6
⊢ (Fun ◡F →
(∃x(¬ x ∈ B ∧ xFy) → ¬
∃x(x ∈ B ∧ xFy))) |
22 | 21 | anim2d 548 |
. . . . 5
⊢ (Fun ◡F →
((∃x(x ∈ A ∧ xFy) ∧ ∃x(¬ x ∈ B ∧ xFy)) →
(∃x(x ∈ A ∧ xFy) ∧ ¬ ∃x(x ∈ B ∧ xFy)))) |
23 | 4, 22 | syl5 28 |
. . . 4
⊢ (Fun ◡F →
(∃x((x ∈ A ∧ ¬ x ∈ B) ∧ xFy) →
(∃x(x ∈ A ∧ xFy) ∧ ¬ ∃x(x ∈ B ∧ xFy)))) |
24 | | 19.29r 1597 |
. . . . . 6
⊢ ((∃x(x ∈ A ∧ xFy) ∧ ∀x ¬
(x ∈
B ∧
xFy)) →
∃x((x ∈ A ∧ xFy) ∧ ¬ (x ∈ B ∧ xFy))) |
25 | 20, 24 | sylan2br 462 |
. . . . 5
⊢ ((∃x(x ∈ A ∧ xFy) ∧ ¬ ∃x(x ∈ B ∧ xFy)) → ∃x((x ∈ A ∧ xFy) ∧ ¬
(x ∈
B ∧
xFy))) |
26 | | andi 837 |
. . . . . . 7
⊢ (((x ∈ A ∧ xFy) ∧ (¬
x ∈
B ∨ ¬
xFy)) ↔
(((x ∈
A ∧
xFy) ∧ ¬ x ∈ B) ∨ ((x ∈ A ∧ xFy) ∧ ¬ xFy))) |
27 | | ianor 474 |
. . . . . . . 8
⊢ (¬ (x ∈ B ∧ xFy) ↔ (¬ x ∈ B ∨ ¬ xFy)) |
28 | 27 | anbi2i 675 |
. . . . . . 7
⊢ (((x ∈ A ∧ xFy) ∧ ¬
(x ∈
B ∧
xFy)) ↔
((x ∈
A ∧
xFy) ∧ (¬ x ∈ B ∨ ¬ xFy))) |
29 | | an32 773 |
. . . . . . . 8
⊢ (((x ∈ A ∧ ¬ x ∈ B) ∧ xFy) ↔ ((x
∈ A ∧ xFy) ∧ ¬ x ∈ B)) |
30 | | pm3.24 852 |
. . . . . . . . . . 11
⊢ ¬ (xFy ∧ ¬ xFy) |
31 | 30 | intnan 880 |
. . . . . . . . . 10
⊢ ¬ (x ∈ A ∧ (xFy ∧ ¬ xFy)) |
32 | | anass 630 |
. . . . . . . . . 10
⊢ (((x ∈ A ∧ xFy) ∧ ¬ xFy) ↔ (x
∈ A ∧ (xFy ∧ ¬ xFy))) |
33 | 31, 32 | mtbir 290 |
. . . . . . . . 9
⊢ ¬ ((x ∈ A ∧ xFy) ∧ ¬ xFy) |
34 | 33 | biorfi 396 |
. . . . . . . 8
⊢ (((x ∈ A ∧ xFy) ∧ ¬ x ∈ B) ↔ (((x
∈ A ∧ xFy) ∧ ¬ x ∈ B) ∨ ((x ∈ A ∧ xFy) ∧ ¬ xFy))) |
35 | 29, 34 | bitri 240 |
. . . . . . 7
⊢ (((x ∈ A ∧ ¬ x ∈ B) ∧ xFy) ↔ (((x
∈ A ∧ xFy) ∧ ¬ x ∈ B) ∨ ((x ∈ A ∧ xFy) ∧ ¬ xFy))) |
36 | 26, 28, 35 | 3bitr4i 268 |
. . . . . 6
⊢ (((x ∈ A ∧ xFy) ∧ ¬
(x ∈
B ∧
xFy)) ↔
((x ∈
A ∧ ¬
x ∈
B) ∧
xFy)) |
37 | 36 | exbii 1582 |
. . . . 5
⊢ (∃x((x ∈ A ∧ xFy) ∧ ¬
(x ∈
B ∧
xFy)) ↔
∃x((x ∈ A ∧ ¬ x ∈ B) ∧ xFy)) |
38 | 25, 37 | sylib 188 |
. . . 4
⊢ ((∃x(x ∈ A ∧ xFy) ∧ ¬ ∃x(x ∈ B ∧ xFy)) → ∃x((x ∈ A ∧ ¬ x ∈ B) ∧ xFy)) |
39 | 23, 38 | impbid1 194 |
. . 3
⊢ (Fun ◡F →
(∃x((x ∈ A ∧ ¬ x ∈ B) ∧ xFy) ↔
(∃x(x ∈ A ∧ xFy) ∧ ¬ ∃x(x ∈ B ∧ xFy)))) |
40 | | elima2 4756 |
. . . 4
⊢ (y ∈ (F “ (A
∖ B))
↔ ∃x(x ∈ (A ∖ B) ∧ xFy)) |
41 | | eldif 3222 |
. . . . . 6
⊢ (x ∈ (A ∖ B) ↔ (x
∈ A ∧ ¬ x ∈ B)) |
42 | 41 | anbi1i 676 |
. . . . 5
⊢ ((x ∈ (A ∖ B) ∧ xFy) ↔ ((x
∈ A ∧ ¬ x ∈ B) ∧ xFy)) |
43 | 42 | exbii 1582 |
. . . 4
⊢ (∃x(x ∈ (A ∖ B) ∧ xFy) ↔ ∃x((x ∈ A ∧ ¬ x ∈ B) ∧ xFy)) |
44 | 40, 43 | bitri 240 |
. . 3
⊢ (y ∈ (F “ (A
∖ B))
↔ ∃x((x ∈ A ∧ ¬ x ∈ B) ∧ xFy)) |
45 | | eldif 3222 |
. . . 4
⊢ (y ∈ ((F “ A)
∖ (F
“ B)) ↔ (y ∈ (F “ A)
∧ ¬ y
∈ (F
“ B))) |
46 | | elima2 4756 |
. . . . 5
⊢ (y ∈ (F “ A)
↔ ∃x(x ∈ A ∧ xFy)) |
47 | | elima2 4756 |
. . . . . 6
⊢ (y ∈ (F “ B)
↔ ∃x(x ∈ B ∧ xFy)) |
48 | 47 | notbii 287 |
. . . . 5
⊢ (¬ y ∈ (F “ B)
↔ ¬ ∃x(x ∈ B ∧ xFy)) |
49 | 46, 48 | anbi12i 678 |
. . . 4
⊢ ((y ∈ (F “ A)
∧ ¬ y
∈ (F
“ B)) ↔ (∃x(x ∈ A ∧ xFy) ∧ ¬ ∃x(x ∈ B ∧ xFy))) |
50 | 45, 49 | bitri 240 |
. . 3
⊢ (y ∈ ((F “ A)
∖ (F
“ B)) ↔ (∃x(x ∈ A ∧ xFy) ∧ ¬ ∃x(x ∈ B ∧ xFy))) |
51 | 39, 44, 50 | 3bitr4g 279 |
. 2
⊢ (Fun ◡F →
(y ∈
(F “ (A ∖ B)) ↔ y
∈ ((F
“ A) ∖ (F “
B)))) |
52 | 51 | eqrdv 2351 |
1
⊢ (Fun ◡F →
(F “ (A ∖ B)) = ((F
“ A) ∖ (F “
B))) |