| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > ifsb | GIF version | ||
| Description: Distribute a function over an if-clause. (Contributed by Mario Carneiro, 14-Aug-2013.) |
| Ref | Expression |
|---|---|
| ifsb.1 | ⊢ ( if(φ, A, B) = A → C = D) |
| ifsb.2 | ⊢ ( if(φ, A, B) = B → C = E) |
| Ref | Expression |
|---|---|
| ifsb | ⊢ C = if(φ, D, E) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iftrue 3669 | . . . 4 ⊢ (φ → if(φ, A, B) = A) | |
| 2 | ifsb.1 | . . . 4 ⊢ ( if(φ, A, B) = A → C = D) | |
| 3 | 1, 2 | syl 15 | . . 3 ⊢ (φ → C = D) |
| 4 | iftrue 3669 | . . 3 ⊢ (φ → if(φ, D, E) = D) | |
| 5 | 3, 4 | eqtr4d 2388 | . 2 ⊢ (φ → C = if(φ, D, E)) |
| 6 | iffalse 3670 | . . . 4 ⊢ (¬ φ → if(φ, A, B) = B) | |
| 7 | ifsb.2 | . . . 4 ⊢ ( if(φ, A, B) = B → C = E) | |
| 8 | 6, 7 | syl 15 | . . 3 ⊢ (¬ φ → C = E) |
| 9 | iffalse 3670 | . . 3 ⊢ (¬ φ → if(φ, D, E) = E) | |
| 10 | 8, 9 | eqtr4d 2388 | . 2 ⊢ (¬ φ → C = if(φ, D, E)) |
| 11 | 5, 10 | pm2.61i 156 | 1 ⊢ C = if(φ, D, E) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1642 ifcif 3663 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-if 3664 |
| This theorem is referenced by: fvif 5341 |
| Copyright terms: Public domain | W3C validator |