NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  eqtr4d GIF version

Theorem eqtr4d 2388
Description: An equality transitivity equality deduction. (Contributed by NM, 18-Jul-1995.)
Hypotheses
Ref Expression
eqtr4d.1 (φA = B)
eqtr4d.2 (φC = B)
Assertion
Ref Expression
eqtr4d (φA = C)

Proof of Theorem eqtr4d
StepHypRef Expression
1 eqtr4d.1 . 2 (φA = B)
2 eqtr4d.2 . . 3 (φC = B)
32eqcomd 2358 . 2 (φB = C)
41, 3eqtrd 2385 1 (φA = C)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-ex 1542  df-cleq 2346
This theorem is referenced by:  3eqtr2d  2391  3eqtr2rd  2392  3eqtr4d  2395  3eqtr4rd  2396  3eqtr4a  2411  sbnfc2  3197  ifsb  3672  ifeq1da  3688  ifeq2da  3689  ifnot  3701  ifan  3702  ifor  3703  setswith  4322  iotauni  4352  dfiota3  4371  dfiota4  4373  nnsucelrlem3  4427  nnpw1ex  4485  tfin11  4494  sfin112  4530  fveqres  5356  funfv  5376  fsn2  5435  fvunsn  5445  fconst2g  5453  ndmovcom  5618  ndmovass  5619  ndmovdistr  5620  fvmpti  5700  fvmptex  5722  fvfullfun  5865  uniqs2  5986  enprmaplem3  6079  nchoicelem7  6296  nchoicelem15  6304  nchoicelem17  6306  fnfrec  6321
  Copyright terms: Public domain W3C validator