New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > eqtr4d | GIF version |
Description: An equality transitivity equality deduction. (Contributed by NM, 18-Jul-1995.) |
Ref | Expression |
---|---|
eqtr4d.1 | ⊢ (φ → A = B) |
eqtr4d.2 | ⊢ (φ → C = B) |
Ref | Expression |
---|---|
eqtr4d | ⊢ (φ → A = C) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtr4d.1 | . 2 ⊢ (φ → A = B) | |
2 | eqtr4d.2 | . . 3 ⊢ (φ → C = B) | |
3 | 2 | eqcomd 2358 | . 2 ⊢ (φ → B = C) |
4 | 1, 3 | eqtrd 2385 | 1 ⊢ (φ → A = C) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1642 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-ex 1542 df-cleq 2346 |
This theorem is referenced by: 3eqtr2d 2391 3eqtr2rd 2392 3eqtr4d 2395 3eqtr4rd 2396 3eqtr4a 2411 sbnfc2 3197 ifsb 3672 ifeq1da 3688 ifeq2da 3689 ifnot 3701 ifan 3702 ifor 3703 setswith 4322 iotauni 4352 dfiota3 4371 dfiota4 4373 nnsucelrlem3 4427 nnpw1ex 4485 tfin11 4494 sfin112 4530 fveqres 5356 funfv 5376 fsn2 5435 fvunsn 5445 fconst2g 5453 ndmovcom 5618 ndmovass 5619 ndmovdistr 5620 fvmpti 5700 fvmptex 5722 fvfullfun 5865 uniqs2 5986 enprmaplem3 6079 nchoicelem7 6296 nchoicelem15 6304 nchoicelem17 6306 fnfrec 6321 |
Copyright terms: Public domain | W3C validator |