New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > iineq2d | GIF version |
Description: Equality deduction for indexed intersection. (Contributed by NM, 7-Dec-2011.) |
Ref | Expression |
---|---|
iineq2d.1 | ⊢ Ⅎxφ |
iineq2d.2 | ⊢ ((φ ∧ x ∈ A) → B = C) |
Ref | Expression |
---|---|
iineq2d | ⊢ (φ → ∩x ∈ A B = ∩x ∈ A C) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iineq2d.1 | . . 3 ⊢ Ⅎxφ | |
2 | iineq2d.2 | . . . 4 ⊢ ((φ ∧ x ∈ A) → B = C) | |
3 | 2 | ex 423 | . . 3 ⊢ (φ → (x ∈ A → B = C)) |
4 | 1, 3 | ralrimi 2696 | . 2 ⊢ (φ → ∀x ∈ A B = C) |
5 | iineq2 3987 | . 2 ⊢ (∀x ∈ A B = C → ∩x ∈ A B = ∩x ∈ A C) | |
6 | 4, 5 | syl 15 | 1 ⊢ (φ → ∩x ∈ A B = ∩x ∈ A C) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 Ⅎwnf 1544 = wceq 1642 ∈ wcel 1710 ∀wral 2615 ∩ciin 3971 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-ral 2620 df-iin 3973 |
This theorem is referenced by: iineq2dv 3992 |
Copyright terms: Public domain | W3C validator |