New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > iuneq2dv | GIF version |
Description: Equality deduction for indexed union. (Contributed by NM, 3-Aug-2004.) |
Ref | Expression |
---|---|
iuneq2dv.1 | ⊢ ((φ ∧ x ∈ A) → B = C) |
Ref | Expression |
---|---|
iuneq2dv | ⊢ (φ → ∪x ∈ A B = ∪x ∈ A C) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iuneq2dv.1 | . . 3 ⊢ ((φ ∧ x ∈ A) → B = C) | |
2 | 1 | ralrimiva 2698 | . 2 ⊢ (φ → ∀x ∈ A B = C) |
3 | iuneq2 3986 | . 2 ⊢ (∀x ∈ A B = C → ∪x ∈ A B = ∪x ∈ A C) | |
4 | 2, 3 | syl 15 | 1 ⊢ (φ → ∪x ∈ A B = ∪x ∈ A C) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 = wceq 1642 ∈ wcel 1710 ∀wral 2615 ∪ciun 3970 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-rex 2621 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 df-iun 3972 |
This theorem is referenced by: iuneq12d 3994 iuneq2d 3995 |
Copyright terms: Public domain | W3C validator |