New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > iineq2 | GIF version |
Description: Equality theorem for indexed intersection. (Contributed by NM, 22-Oct-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
iineq2 | ⊢ (∀x ∈ A B = C → ∩x ∈ A B = ∩x ∈ A C) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2414 | . . . . 5 ⊢ (B = C → (y ∈ B ↔ y ∈ C)) | |
2 | 1 | ralimi 2690 | . . . 4 ⊢ (∀x ∈ A B = C → ∀x ∈ A (y ∈ B ↔ y ∈ C)) |
3 | ralbi 2751 | . . . 4 ⊢ (∀x ∈ A (y ∈ B ↔ y ∈ C) → (∀x ∈ A y ∈ B ↔ ∀x ∈ A y ∈ C)) | |
4 | 2, 3 | syl 15 | . . 3 ⊢ (∀x ∈ A B = C → (∀x ∈ A y ∈ B ↔ ∀x ∈ A y ∈ C)) |
5 | 4 | abbidv 2468 | . 2 ⊢ (∀x ∈ A B = C → {y ∣ ∀x ∈ A y ∈ B} = {y ∣ ∀x ∈ A y ∈ C}) |
6 | df-iin 3973 | . 2 ⊢ ∩x ∈ A B = {y ∣ ∀x ∈ A y ∈ B} | |
7 | df-iin 3973 | . 2 ⊢ ∩x ∈ A C = {y ∣ ∀x ∈ A y ∈ C} | |
8 | 5, 6, 7 | 3eqtr4g 2410 | 1 ⊢ (∀x ∈ A B = C → ∩x ∈ A B = ∩x ∈ A C) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 = wceq 1642 ∈ wcel 1710 {cab 2339 ∀wral 2615 ∩ciin 3971 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-ral 2620 df-iin 3973 |
This theorem is referenced by: iineq2i 3989 iineq2d 3990 |
Copyright terms: Public domain | W3C validator |