NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  im2anan9 GIF version

Theorem im2anan9 808
Description: Deduction joining nested implications to form implication of conjunctions. (Contributed by NM, 29-Feb-1996.)
Hypotheses
Ref Expression
im2an9.1 (φ → (ψχ))
im2an9.2 (θ → (τη))
Assertion
Ref Expression
im2anan9 ((φ θ) → ((ψ τ) → (χ η)))

Proof of Theorem im2anan9
StepHypRef Expression
1 im2an9.1 . . 3 (φ → (ψχ))
21adantr 451 . 2 ((φ θ) → (ψχ))
3 im2an9.2 . . 3 (θ → (τη))
43adantl 452 . 2 ((φ θ) → (τη))
52, 4anim12d 546 1 ((φ θ) → ((ψ τ) → (χ η)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  im2anan9r  809  ax11eq  2193  ax11el  2194  xpss12  4856  f1oun  5305  fntxp  5805  fnpprod  5844  fce  6189
  Copyright terms: Public domain W3C validator