New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > im2anan9 | GIF version |
Description: Deduction joining nested implications to form implication of conjunctions. (Contributed by NM, 29-Feb-1996.) |
Ref | Expression |
---|---|
im2an9.1 | ⊢ (φ → (ψ → χ)) |
im2an9.2 | ⊢ (θ → (τ → η)) |
Ref | Expression |
---|---|
im2anan9 | ⊢ ((φ ∧ θ) → ((ψ ∧ τ) → (χ ∧ η))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | im2an9.1 | . . 3 ⊢ (φ → (ψ → χ)) | |
2 | 1 | adantr 451 | . 2 ⊢ ((φ ∧ θ) → (ψ → χ)) |
3 | im2an9.2 | . . 3 ⊢ (θ → (τ → η)) | |
4 | 3 | adantl 452 | . 2 ⊢ ((φ ∧ θ) → (τ → η)) |
5 | 2, 4 | anim12d 546 | 1 ⊢ ((φ ∧ θ) → ((ψ ∧ τ) → (χ ∧ η))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: im2anan9r 809 ax11eq 2193 ax11el 2194 xpss12 4856 f1oun 5305 fntxp 5805 fnpprod 5844 fce 6189 |
Copyright terms: Public domain | W3C validator |