| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > xpss12 | GIF version | ||
| Description: Subset theorem for cross product. Generalization of Theorem 101 of [Suppes] p. 52. (The proof was shortened by Andrew Salmon, 27-Aug-2011.) (Contributed by NM, 26-Aug-1995.) (Revised by set.mm contributors, 27-Aug-2011.) | 
| Ref | Expression | 
|---|---|
| xpss12 | ⊢ ((A ⊆ B ∧ C ⊆ D) → (A × C) ⊆ (B × D)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ssel 3268 | . . . 4 ⊢ (A ⊆ B → (x ∈ A → x ∈ B)) | |
| 2 | ssel 3268 | . . . 4 ⊢ (C ⊆ D → (y ∈ C → y ∈ D)) | |
| 3 | 1, 2 | im2anan9 808 | . . 3 ⊢ ((A ⊆ B ∧ C ⊆ D) → ((x ∈ A ∧ y ∈ C) → (x ∈ B ∧ y ∈ D))) | 
| 4 | 3 | ssopab2dv 4716 | . 2 ⊢ ((A ⊆ B ∧ C ⊆ D) → {〈x, y〉 ∣ (x ∈ A ∧ y ∈ C)} ⊆ {〈x, y〉 ∣ (x ∈ B ∧ y ∈ D)}) | 
| 5 | df-xp 4785 | . 2 ⊢ (A × C) = {〈x, y〉 ∣ (x ∈ A ∧ y ∈ C)} | |
| 6 | df-xp 4785 | . 2 ⊢ (B × D) = {〈x, y〉 ∣ (x ∈ B ∧ y ∈ D)} | |
| 7 | 4, 5, 6 | 3sstr4g 3313 | 1 ⊢ ((A ⊆ B ∧ C ⊆ D) → (A × C) ⊆ (B × D)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 358 ∈ wcel 1710 ⊆ wss 3258 {copab 4623 × cxp 4771 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 df-opab 4624 df-xp 4785 | 
| This theorem is referenced by: xpss1 4857 xpss2 4858 ssxpb 5056 fssxp 5233 | 
| Copyright terms: Public domain | W3C validator |