NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  xpss12 GIF version

Theorem xpss12 4856
Description: Subset theorem for cross product. Generalization of Theorem 101 of [Suppes] p. 52. (The proof was shortened by Andrew Salmon, 27-Aug-2011.) (Contributed by NM, 26-Aug-1995.) (Revised by set.mm contributors, 27-Aug-2011.)
Assertion
Ref Expression
xpss12 ((A B C D) → (A × C) (B × D))

Proof of Theorem xpss12
Dummy variables x y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel 3268 . . . 4 (A B → (x Ax B))
2 ssel 3268 . . . 4 (C D → (y Cy D))
31, 2im2anan9 808 . . 3 ((A B C D) → ((x A y C) → (x B y D)))
43ssopab2dv 4716 . 2 ((A B C D) → {x, y (x A y C)} {x, y (x B y D)})
5 df-xp 4785 . 2 (A × C) = {x, y (x A y C)}
6 df-xp 4785 . 2 (B × D) = {x, y (x B y D)}
74, 5, 63sstr4g 3313 1 ((A B C D) → (A × C) (B × D))
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358   wcel 1710   wss 3258  {copab 4623   × cxp 4771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-ss 3260  df-opab 4624  df-xp 4785
This theorem is referenced by:  xpss1  4857  xpss2  4858  ssxpb  5056  fssxp  5233
  Copyright terms: Public domain W3C validator