New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > f1oun | GIF version |
Description: The union of two one-to-one onto functions with disjoint domains and ranges. (Contributed by set.mm contributors, 26-Mar-1998.) |
Ref | Expression |
---|---|
f1oun | ⊢ (((F:A–1-1-onto→B ∧ G:C–1-1-onto→D) ∧ ((A ∩ C) = ∅ ∧ (B ∩ D) = ∅)) → (F ∪ G):(A ∪ C)–1-1-onto→(B ∪ D)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dff1o4 5294 | . . . 4 ⊢ (F:A–1-1-onto→B ↔ (F Fn A ∧ ◡F Fn B)) | |
2 | dff1o4 5294 | . . . 4 ⊢ (G:C–1-1-onto→D ↔ (G Fn C ∧ ◡G Fn D)) | |
3 | fnun 5189 | . . . . . . 7 ⊢ (((F Fn A ∧ G Fn C) ∧ (A ∩ C) = ∅) → (F ∪ G) Fn (A ∪ C)) | |
4 | 3 | ex 423 | . . . . . 6 ⊢ ((F Fn A ∧ G Fn C) → ((A ∩ C) = ∅ → (F ∪ G) Fn (A ∪ C))) |
5 | fnun 5189 | . . . . . . . 8 ⊢ (((◡F Fn B ∧ ◡G Fn D) ∧ (B ∩ D) = ∅) → (◡F ∪ ◡G) Fn (B ∪ D)) | |
6 | cnvun 5033 | . . . . . . . . 9 ⊢ ◡(F ∪ G) = (◡F ∪ ◡G) | |
7 | 6 | fneq1i 5178 | . . . . . . . 8 ⊢ (◡(F ∪ G) Fn (B ∪ D) ↔ (◡F ∪ ◡G) Fn (B ∪ D)) |
8 | 5, 7 | sylibr 203 | . . . . . . 7 ⊢ (((◡F Fn B ∧ ◡G Fn D) ∧ (B ∩ D) = ∅) → ◡(F ∪ G) Fn (B ∪ D)) |
9 | 8 | ex 423 | . . . . . 6 ⊢ ((◡F Fn B ∧ ◡G Fn D) → ((B ∩ D) = ∅ → ◡(F ∪ G) Fn (B ∪ D))) |
10 | 4, 9 | im2anan9 808 | . . . . 5 ⊢ (((F Fn A ∧ G Fn C) ∧ (◡F Fn B ∧ ◡G Fn D)) → (((A ∩ C) = ∅ ∧ (B ∩ D) = ∅) → ((F ∪ G) Fn (A ∪ C) ∧ ◡(F ∪ G) Fn (B ∪ D)))) |
11 | 10 | an4s 799 | . . . 4 ⊢ (((F Fn A ∧ ◡F Fn B) ∧ (G Fn C ∧ ◡G Fn D)) → (((A ∩ C) = ∅ ∧ (B ∩ D) = ∅) → ((F ∪ G) Fn (A ∪ C) ∧ ◡(F ∪ G) Fn (B ∪ D)))) |
12 | 1, 2, 11 | syl2anb 465 | . . 3 ⊢ ((F:A–1-1-onto→B ∧ G:C–1-1-onto→D) → (((A ∩ C) = ∅ ∧ (B ∩ D) = ∅) → ((F ∪ G) Fn (A ∪ C) ∧ ◡(F ∪ G) Fn (B ∪ D)))) |
13 | dff1o4 5294 | . . 3 ⊢ ((F ∪ G):(A ∪ C)–1-1-onto→(B ∪ D) ↔ ((F ∪ G) Fn (A ∪ C) ∧ ◡(F ∪ G) Fn (B ∪ D))) | |
14 | 12, 13 | syl6ibr 218 | . 2 ⊢ ((F:A–1-1-onto→B ∧ G:C–1-1-onto→D) → (((A ∩ C) = ∅ ∧ (B ∩ D) = ∅) → (F ∪ G):(A ∪ C)–1-1-onto→(B ∪ D))) |
15 | 14 | imp 418 | 1 ⊢ (((F:A–1-1-onto→B ∧ G:C–1-1-onto→D) ∧ ((A ∩ C) = ∅ ∧ (B ∩ D) = ∅)) → (F ∪ G):(A ∪ C)–1-1-onto→(B ∪ D)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 = wceq 1642 ∪ cun 3207 ∩ cin 3208 ∅c0 3550 ◡ccnv 4771 Fn wfn 4776 –1-1-onto→wf1o 4780 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-1c 4081 ax-sset 4082 ax-si 4083 ax-ins2 4084 ax-ins3 4085 ax-typlower 4086 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-reu 2621 df-rmo 2622 df-rab 2623 df-v 2861 df-sbc 3047 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-symdif 3216 df-ss 3259 df-pss 3261 df-nul 3551 df-if 3663 df-pw 3724 df-sn 3741 df-pr 3742 df-uni 3892 df-int 3927 df-opk 4058 df-1c 4136 df-pw1 4137 df-uni1 4138 df-xpk 4185 df-cnvk 4186 df-ins2k 4187 df-ins3k 4188 df-imak 4189 df-cok 4190 df-p6 4191 df-sik 4192 df-ssetk 4193 df-imagek 4194 df-idk 4195 df-iota 4339 df-0c 4377 df-addc 4378 df-nnc 4379 df-fin 4380 df-lefin 4440 df-ltfin 4441 df-ncfin 4442 df-tfin 4443 df-evenfin 4444 df-oddfin 4445 df-sfin 4446 df-spfin 4447 df-phi 4565 df-op 4566 df-proj1 4567 df-proj2 4568 df-opab 4623 df-br 4640 df-co 4726 df-ima 4727 df-id 4767 df-cnv 4785 df-rn 4786 df-dm 4787 df-fun 4789 df-fn 4790 df-f 4791 df-f1 4792 df-fo 4793 df-f1o 4794 |
This theorem is referenced by: unen 6048 |
Copyright terms: Public domain | W3C validator |