Step | Hyp | Ref
| Expression |
1 | | ffn 5224 |
. . 3
⊢ (F:A–→{B} → F Fn
A) |
2 | | fvconst 5441 |
. . . 4
⊢ ((F:A–→{B} ∧ x ∈ A) → (F
‘x) = B) |
3 | 2 | ralrimiva 2698 |
. . 3
⊢ (F:A–→{B} → ∀x ∈ A (F ‘x) =
B) |
4 | 1, 3 | jca 518 |
. 2
⊢ (F:A–→{B} → (F Fn
A ∧ ∀x ∈ A (F ‘x) =
B)) |
5 | | fneq2 5175 |
. . . . . . 7
⊢ (A = ∅ →
(F Fn A
↔ F Fn ∅)) |
6 | | fn0 5203 |
. . . . . . 7
⊢ (F Fn ∅ ↔
F = ∅) |
7 | 5, 6 | syl6bb 252 |
. . . . . 6
⊢ (A = ∅ →
(F Fn A
↔ F = ∅)) |
8 | | f0 5249 |
. . . . . . 7
⊢ ∅:∅–→{B} |
9 | | feq1 5211 |
. . . . . . 7
⊢ (F = ∅ →
(F:∅–→{B} ↔ ∅:∅–→{B})) |
10 | 8, 9 | mpbiri 224 |
. . . . . 6
⊢ (F = ∅ →
F:∅–→{B}) |
11 | 7, 10 | syl6bi 219 |
. . . . 5
⊢ (A = ∅ →
(F Fn A
→ F:∅–→{B})) |
12 | | feq2 5212 |
. . . . 5
⊢ (A = ∅ →
(F:A–→{B} ↔ F:∅–→{B})) |
13 | 11, 12 | sylibrd 225 |
. . . 4
⊢ (A = ∅ →
(F Fn A
→ F:A–→{B})) |
14 | 13 | adantrd 454 |
. . 3
⊢ (A = ∅ →
((F Fn A ∧ ∀x ∈ A (F ‘x) =
B) → F:A–→{B})) |
15 | | fvelrnb 5366 |
. . . . . . . . . 10
⊢ (F Fn A →
(y ∈ ran
F ↔ ∃z ∈ A (F ‘z) =
y)) |
16 | | fveq2 5329 |
. . . . . . . . . . . . . . 15
⊢ (x = z →
(F ‘x) = (F
‘z)) |
17 | 16 | eqeq1d 2361 |
. . . . . . . . . . . . . 14
⊢ (x = z →
((F ‘x) = B ↔
(F ‘z) = B)) |
18 | 17 | rspccva 2955 |
. . . . . . . . . . . . 13
⊢ ((∀x ∈ A (F ‘x) =
B ∧
z ∈
A) → (F ‘z) =
B) |
19 | 18 | eqeq1d 2361 |
. . . . . . . . . . . 12
⊢ ((∀x ∈ A (F ‘x) =
B ∧
z ∈
A) → ((F ‘z) =
y ↔ B = y)) |
20 | 19 | rexbidva 2632 |
. . . . . . . . . . 11
⊢ (∀x ∈ A (F ‘x) =
B → (∃z ∈ A (F ‘z) =
y ↔ ∃z ∈ A B = y)) |
21 | | r19.9rzv 3645 |
. . . . . . . . . . . 12
⊢ (A ≠ ∅ →
(B = y
↔ ∃z ∈ A B = y)) |
22 | 21 | bicomd 192 |
. . . . . . . . . . 11
⊢ (A ≠ ∅ →
(∃z
∈ A
B = y
↔ B = y)) |
23 | 20, 22 | sylan9bbr 681 |
. . . . . . . . . 10
⊢ ((A ≠ ∅ ∧ ∀x ∈ A (F
‘x) = B) → (∃z ∈ A (F ‘z) =
y ↔ B = y)) |
24 | 15, 23 | sylan9bbr 681 |
. . . . . . . . 9
⊢ (((A ≠ ∅ ∧ ∀x ∈ A (F
‘x) = B) ∧ F Fn A) →
(y ∈ ran
F ↔ B = y)) |
25 | | elsn 3749 |
. . . . . . . . . 10
⊢ (y ∈ {B} ↔ y =
B) |
26 | | eqcom 2355 |
. . . . . . . . . 10
⊢ (y = B ↔
B = y) |
27 | 25, 26 | bitr2i 241 |
. . . . . . . . 9
⊢ (B = y ↔
y ∈
{B}) |
28 | 24, 27 | syl6bb 252 |
. . . . . . . 8
⊢ (((A ≠ ∅ ∧ ∀x ∈ A (F
‘x) = B) ∧ F Fn A) →
(y ∈ ran
F ↔ y ∈ {B})) |
29 | 28 | eqrdv 2351 |
. . . . . . 7
⊢ (((A ≠ ∅ ∧ ∀x ∈ A (F
‘x) = B) ∧ F Fn A) →
ran F = {B}) |
30 | 29 | an32s 779 |
. . . . . 6
⊢ (((A ≠ ∅ ∧ F Fn A) ∧ ∀x ∈ A (F ‘x) =
B) → ran F = {B}) |
31 | 30 | exp31 587 |
. . . . 5
⊢ (A ≠ ∅ →
(F Fn A
→ (∀x ∈ A (F
‘x) = B → ran F =
{B}))) |
32 | 31 | imdistand 673 |
. . . 4
⊢ (A ≠ ∅ →
((F Fn A ∧ ∀x ∈ A (F ‘x) =
B) → (F Fn A ∧ ran F =
{B}))) |
33 | | df-fo 4794 |
. . . . 5
⊢ (F:A–onto→{B} ↔ (F Fn
A ∧ ran
F = {B})) |
34 | | fof 5270 |
. . . . 5
⊢ (F:A–onto→{B} → F:A–→{B}) |
35 | 33, 34 | sylbir 204 |
. . . 4
⊢ ((F Fn A ∧ ran F =
{B}) → F:A–→{B}) |
36 | 32, 35 | syl6 29 |
. . 3
⊢ (A ≠ ∅ →
((F Fn A ∧ ∀x ∈ A (F ‘x) =
B) → F:A–→{B})) |
37 | 14, 36 | pm2.61ine 2593 |
. 2
⊢ ((F Fn A ∧ ∀x ∈ A (F
‘x) = B) → F:A–→{B}) |
38 | 4, 37 | impbii 180 |
1
⊢ (F:A–→{B} ↔ (F Fn
A ∧ ∀x ∈ A (F ‘x) =
B)) |