Proof of Theorem difrab
Step | Hyp | Ref
| Expression |
1 | | df-rab 2624 |
. . 3
⊢ {x ∈ A ∣ φ} = {x
∣ (x
∈ A ∧ φ)} |
2 | | df-rab 2624 |
. . 3
⊢ {x ∈ A ∣ ψ} = {x
∣ (x
∈ A ∧ ψ)} |
3 | 1, 2 | difeq12i 3384 |
. 2
⊢ ({x ∈ A ∣ φ} ∖
{x ∈
A ∣
ψ}) = ({x ∣ (x ∈ A ∧ φ)} ∖
{x ∣
(x ∈
A ∧ ψ)}) |
4 | | df-rab 2624 |
. . 3
⊢ {x ∈ A ∣ (φ ∧ ¬
ψ)} = {x ∣ (x ∈ A ∧ (φ ∧ ¬
ψ))} |
5 | | difab 3524 |
. . . 4
⊢ ({x ∣ (x ∈ A ∧ φ)} ∖
{x ∣
(x ∈
A ∧ ψ)}) = {x
∣ ((x
∈ A ∧ φ) ∧ ¬ (x ∈ A ∧ ψ))} |
6 | | anass 630 |
. . . . . 6
⊢ (((x ∈ A ∧ φ) ∧ ¬
ψ) ↔ (x ∈ A ∧ (φ ∧ ¬
ψ))) |
7 | | simpr 447 |
. . . . . . . . 9
⊢ ((x ∈ A ∧ ψ) → ψ) |
8 | 7 | con3i 127 |
. . . . . . . 8
⊢ (¬ ψ → ¬ (x ∈ A ∧ ψ)) |
9 | 8 | anim2i 552 |
. . . . . . 7
⊢ (((x ∈ A ∧ φ) ∧ ¬
ψ) → ((x ∈ A ∧ φ) ∧ ¬
(x ∈
A ∧ ψ))) |
10 | | pm3.2 434 |
. . . . . . . . . 10
⊢ (x ∈ A → (ψ
→ (x ∈ A ∧ ψ))) |
11 | 10 | adantr 451 |
. . . . . . . . 9
⊢ ((x ∈ A ∧ φ) → (ψ → (x ∈ A ∧ ψ))) |
12 | 11 | con3d 125 |
. . . . . . . 8
⊢ ((x ∈ A ∧ φ) → (¬ (x ∈ A ∧ ψ) → ¬ ψ)) |
13 | 12 | imdistani 671 |
. . . . . . 7
⊢ (((x ∈ A ∧ φ) ∧ ¬
(x ∈
A ∧ ψ)) → ((x ∈ A ∧ φ) ∧ ¬
ψ)) |
14 | 9, 13 | impbii 180 |
. . . . . 6
⊢ (((x ∈ A ∧ φ) ∧ ¬
ψ) ↔ ((x ∈ A ∧ φ) ∧ ¬
(x ∈
A ∧ ψ))) |
15 | 6, 14 | bitr3i 242 |
. . . . 5
⊢ ((x ∈ A ∧ (φ ∧ ¬
ψ)) ↔ ((x ∈ A ∧ φ) ∧ ¬
(x ∈
A ∧ ψ))) |
16 | 15 | abbii 2466 |
. . . 4
⊢ {x ∣ (x ∈ A ∧ (φ ∧ ¬
ψ))} = {x ∣ ((x ∈ A ∧ φ) ∧ ¬
(x ∈
A ∧ ψ))} |
17 | 5, 16 | eqtr4i 2376 |
. . 3
⊢ ({x ∣ (x ∈ A ∧ φ)} ∖
{x ∣
(x ∈
A ∧ ψ)}) = {x
∣ (x
∈ A ∧ (φ ∧ ¬ ψ))} |
18 | 4, 17 | eqtr4i 2376 |
. 2
⊢ {x ∈ A ∣ (φ ∧ ¬
ψ)} = ({x ∣ (x ∈ A ∧ φ)} ∖
{x ∣
(x ∈
A ∧ ψ)}) |
19 | 3, 18 | eqtr4i 2376 |
1
⊢ ({x ∈ A ∣ φ} ∖
{x ∈
A ∣
ψ}) = {x ∈ A ∣ (φ ∧ ¬
ψ)} |