Proof of Theorem dffo4
Step | Hyp | Ref
| Expression |
1 | | fof 5270 |
. . 3
⊢ (F:A–onto→B
→ F:A–→B) |
2 | | elrn 4897 |
. . . . . . . 8
⊢ (y ∈ ran F ↔ ∃x xFy) |
3 | | forn 5273 |
. . . . . . . . 9
⊢ (F:A–onto→B
→ ran F = B) |
4 | 3 | eleq2d 2420 |
. . . . . . . 8
⊢ (F:A–onto→B
→ (y ∈ ran F ↔
y ∈
B)) |
5 | 2, 4 | syl5bbr 250 |
. . . . . . 7
⊢ (F:A–onto→B
→ (∃x xFy ↔
y ∈
B)) |
6 | 5 | biimpar 471 |
. . . . . 6
⊢ ((F:A–onto→B
∧ y ∈ B) →
∃x
xFy) |
7 | | breldm 4912 |
. . . . . . . . . 10
⊢ (xFy → x ∈ dom F) |
8 | | fdm 5227 |
. . . . . . . . . . . 12
⊢ (F:A–→B
→ dom F = A) |
9 | 1, 8 | syl 15 |
. . . . . . . . . . 11
⊢ (F:A–onto→B
→ dom F = A) |
10 | 9 | eleq2d 2420 |
. . . . . . . . . 10
⊢ (F:A–onto→B
→ (x ∈ dom F ↔
x ∈
A)) |
11 | 7, 10 | syl5ib 210 |
. . . . . . . . 9
⊢ (F:A–onto→B
→ (xFy →
x ∈
A)) |
12 | 11 | ancrd 537 |
. . . . . . . 8
⊢ (F:A–onto→B
→ (xFy →
(x ∈
A ∧
xFy))) |
13 | 12 | eximdv 1622 |
. . . . . . 7
⊢ (F:A–onto→B
→ (∃x xFy → ∃x(x ∈ A ∧ xFy))) |
14 | 13 | adantr 451 |
. . . . . 6
⊢ ((F:A–onto→B
∧ y ∈ B) →
(∃x
xFy → ∃x(x ∈ A ∧ xFy))) |
15 | 6, 14 | mpd 14 |
. . . . 5
⊢ ((F:A–onto→B
∧ y ∈ B) →
∃x(x ∈ A ∧ xFy)) |
16 | | df-rex 2621 |
. . . . 5
⊢ (∃x ∈ A xFy ↔ ∃x(x ∈ A ∧ xFy)) |
17 | 15, 16 | sylibr 203 |
. . . 4
⊢ ((F:A–onto→B
∧ y ∈ B) →
∃x ∈ A xFy) |
18 | 17 | ralrimiva 2698 |
. . 3
⊢ (F:A–onto→B
→ ∀y ∈ B ∃x ∈ A xFy) |
19 | 1, 18 | jca 518 |
. 2
⊢ (F:A–onto→B
→ (F:A–→B
∧ ∀y ∈ B ∃x ∈ A xFy)) |
20 | | ffn 5224 |
. . . . . . 7
⊢ (F:A–→B
→ F Fn A) |
21 | | eqcom 2355 |
. . . . . . . . 9
⊢ (y = (F
‘x) ↔ (F ‘x) =
y) |
22 | | fnbrfvb 5359 |
. . . . . . . . 9
⊢ ((F Fn A ∧ x ∈ A) →
((F ‘x) = y ↔
xFy)) |
23 | 21, 22 | syl5bb 248 |
. . . . . . . 8
⊢ ((F Fn A ∧ x ∈ A) →
(y = (F
‘x) ↔ xFy)) |
24 | 23 | biimprd 214 |
. . . . . . 7
⊢ ((F Fn A ∧ x ∈ A) →
(xFy →
y = (F
‘x))) |
25 | 20, 24 | sylan 457 |
. . . . . 6
⊢ ((F:A–→B
∧ x ∈ A) →
(xFy →
y = (F
‘x))) |
26 | 25 | reximdva 2727 |
. . . . 5
⊢ (F:A–→B
→ (∃x ∈ A xFy → ∃x ∈ A y = (F
‘x))) |
27 | 26 | ralimdv 2694 |
. . . 4
⊢ (F:A–→B
→ (∀y ∈ B ∃x ∈ A xFy → ∀y ∈ B ∃x ∈ A y = (F
‘x))) |
28 | 27 | imdistani 671 |
. . 3
⊢ ((F:A–→B
∧ ∀y ∈ B ∃x ∈ A xFy) → (F:A–→B
∧ ∀y ∈ B ∃x ∈ A y = (F
‘x))) |
29 | | dffo3 5423 |
. . 3
⊢ (F:A–onto→B
↔ (F:A–→B
∧ ∀y ∈ B ∃x ∈ A y = (F
‘x))) |
30 | 28, 29 | sylibr 203 |
. 2
⊢ ((F:A–→B
∧ ∀y ∈ B ∃x ∈ A xFy) → F:A–onto→B) |
31 | 19, 30 | impbii 180 |
1
⊢ (F:A–onto→B
↔ (F:A–→B
∧ ∀y ∈ B ∃x ∈ A xFy)) |