New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nfan1 | GIF version |
Description: A closed form of nfan 1824. (Contributed by Mario Carneiro, 3-Oct-2016.) |
Ref | Expression |
---|---|
nfan1.1 | ⊢ Ⅎxφ |
nfan1.2 | ⊢ (φ → Ⅎxψ) |
Ref | Expression |
---|---|
nfan1 | ⊢ Ⅎx(φ ∧ ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfan1.2 | . . . . 5 ⊢ (φ → Ⅎxψ) | |
2 | 1 | nfrd 1763 | . . . 4 ⊢ (φ → (ψ → ∀xψ)) |
3 | 2 | imdistani 671 | . . 3 ⊢ ((φ ∧ ψ) → (φ ∧ ∀xψ)) |
4 | nfan1.1 | . . . 4 ⊢ Ⅎxφ | |
5 | 4 | 19.28 1870 | . . 3 ⊢ (∀x(φ ∧ ψ) ↔ (φ ∧ ∀xψ)) |
6 | 3, 5 | sylibr 203 | . 2 ⊢ ((φ ∧ ψ) → ∀x(φ ∧ ψ)) |
7 | 6 | nfi 1551 | 1 ⊢ Ⅎx(φ ∧ ψ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∀wal 1540 Ⅎwnf 1544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-nf 1545 |
This theorem is referenced by: spimed 1977 ralcom2 2776 sbcralt 3119 sbcrext 3120 csbiebt 3173 |
Copyright terms: Public domain | W3C validator |