| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > nfan1 | GIF version | ||
| Description: A closed form of nfan 1824. (Contributed by Mario Carneiro, 3-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfan1.1 | ⊢ Ⅎxφ |
| nfan1.2 | ⊢ (φ → Ⅎxψ) |
| Ref | Expression |
|---|---|
| nfan1 | ⊢ Ⅎx(φ ∧ ψ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfan1.2 | . . . . 5 ⊢ (φ → Ⅎxψ) | |
| 2 | 1 | nfrd 1763 | . . . 4 ⊢ (φ → (ψ → ∀xψ)) |
| 3 | 2 | imdistani 671 | . . 3 ⊢ ((φ ∧ ψ) → (φ ∧ ∀xψ)) |
| 4 | nfan1.1 | . . . 4 ⊢ Ⅎxφ | |
| 5 | 4 | 19.28 1870 | . . 3 ⊢ (∀x(φ ∧ ψ) ↔ (φ ∧ ∀xψ)) |
| 6 | 3, 5 | sylibr 203 | . 2 ⊢ ((φ ∧ ψ) → ∀x(φ ∧ ψ)) |
| 7 | 6 | nfi 1551 | 1 ⊢ Ⅎx(φ ∧ ψ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 358 ∀wal 1540 Ⅎwnf 1544 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-nf 1545 |
| This theorem is referenced by: spimed 1977 ralcom2 2776 sbcralt 3119 sbcrext 3120 csbiebt 3173 |
| Copyright terms: Public domain | W3C validator |