NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  dffo5 GIF version

Theorem dffo5 5424
Description: Alternate definition of an onto mapping. (Contributed by set.mm contributors, 20-Mar-2007.)
Assertion
Ref Expression
dffo5 (F:AontoB ↔ (F:A–→B y B x xFy))
Distinct variable groups:   x,y,A   x,B,y   x,F,y

Proof of Theorem dffo5
StepHypRef Expression
1 dffo4 5423 . 2 (F:AontoB ↔ (F:A–→B y B x A xFy))
2 rexex 2673 . . . . 5 (x A xFyx xFy)
32ralimi 2689 . . . 4 (y B x A xFyy B x xFy)
43anim2i 552 . . 3 ((F:A–→B y B x A xFy) → (F:A–→B y B x xFy))
5 ffn 5223 . . . . . . . . 9 (F:A–→BF Fn A)
6 fnbr 5185 . . . . . . . . . 10 ((F Fn A xFy) → x A)
76ex 423 . . . . . . . . 9 (F Fn A → (xFyx A))
85, 7syl 15 . . . . . . . 8 (F:A–→B → (xFyx A))
98ancrd 537 . . . . . . 7 (F:A–→B → (xFy → (x A xFy)))
109eximdv 1622 . . . . . 6 (F:A–→B → (x xFyx(x A xFy)))
11 df-rex 2620 . . . . . 6 (x A xFyx(x A xFy))
1210, 11syl6ibr 218 . . . . 5 (F:A–→B → (x xFyx A xFy))
1312ralimdv 2693 . . . 4 (F:A–→B → (y B x xFyy B x A xFy))
1413imdistani 671 . . 3 ((F:A–→B y B x xFy) → (F:A–→B y B x A xFy))
154, 14impbii 180 . 2 ((F:A–→B y B x A xFy) ↔ (F:A–→B y B x xFy))
161, 15bitri 240 1 (F:AontoB ↔ (F:A–→B y B x xFy))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358  wex 1541   wcel 1710  wral 2614  wrex 2615   class class class wbr 4639   Fn wfn 4776  –→wf 4777  ontowfo 4779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4078  ax-xp 4079  ax-cnv 4080  ax-1c 4081  ax-sset 4082  ax-si 4083  ax-ins2 4084  ax-ins3 4085  ax-typlower 4086  ax-sn 4087
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-ne 2518  df-ral 2619  df-rex 2620  df-reu 2621  df-rmo 2622  df-rab 2623  df-v 2861  df-sbc 3047  df-nin 3211  df-compl 3212  df-in 3213  df-un 3214  df-dif 3215  df-symdif 3216  df-ss 3259  df-pss 3261  df-nul 3551  df-if 3663  df-pw 3724  df-sn 3741  df-pr 3742  df-uni 3892  df-int 3927  df-opk 4058  df-1c 4136  df-pw1 4137  df-uni1 4138  df-xpk 4185  df-cnvk 4186  df-ins2k 4187  df-ins3k 4188  df-imak 4189  df-cok 4190  df-p6 4191  df-sik 4192  df-ssetk 4193  df-imagek 4194  df-idk 4195  df-iota 4339  df-0c 4377  df-addc 4378  df-nnc 4379  df-fin 4380  df-lefin 4440  df-ltfin 4441  df-ncfin 4442  df-tfin 4443  df-evenfin 4444  df-oddfin 4445  df-sfin 4446  df-spfin 4447  df-phi 4565  df-op 4566  df-proj1 4567  df-proj2 4568  df-opab 4623  df-br 4640  df-co 4726  df-ima 4727  df-id 4767  df-cnv 4785  df-rn 4786  df-dm 4787  df-fun 4789  df-fn 4790  df-f 4791  df-fo 4793  df-fv 4795
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator