New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sbc2iedv | GIF version |
Description: Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 16-Dec-2008.) (Proof shortened by Mario Carneiro, 18-Oct-2016.) |
Ref | Expression |
---|---|
sbc2iedv.1 | ⊢ A ∈ V |
sbc2iedv.2 | ⊢ B ∈ V |
sbc2iedv.3 | ⊢ (φ → ((x = A ∧ y = B) → (ψ ↔ χ))) |
Ref | Expression |
---|---|
sbc2iedv | ⊢ (φ → ([̣A / x]̣[̣B / y]̣ψ ↔ χ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbc2iedv.1 | . . 3 ⊢ A ∈ V | |
2 | 1 | a1i 10 | . 2 ⊢ (φ → A ∈ V) |
3 | sbc2iedv.2 | . . . 4 ⊢ B ∈ V | |
4 | 3 | a1i 10 | . . 3 ⊢ ((φ ∧ x = A) → B ∈ V) |
5 | sbc2iedv.3 | . . . 4 ⊢ (φ → ((x = A ∧ y = B) → (ψ ↔ χ))) | |
6 | 5 | impl 603 | . . 3 ⊢ (((φ ∧ x = A) ∧ y = B) → (ψ ↔ χ)) |
7 | 4, 6 | sbcied 3083 | . 2 ⊢ ((φ ∧ x = A) → ([̣B / y]̣ψ ↔ χ)) |
8 | 2, 7 | sbcied 3083 | 1 ⊢ (φ → ([̣A / x]̣[̣B / y]̣ψ ↔ χ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 = wceq 1642 ∈ wcel 1710 Vcvv 2860 [̣wsbc 3047 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-sbc 3048 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |