New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > foco2 | GIF version |
Description: If a composition of two functions is surjective, then the function on the left is surjective. (Contributed by Jeff Madsen, 16-Jun-2011.) |
Ref | Expression |
---|---|
foco2 | ⊢ ((F:B–→C ∧ G:A–→B ∧ (F ∘ G):A–onto→C) → F:B–onto→C) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 955 | . 2 ⊢ ((F:B–→C ∧ G:A–→B ∧ (F ∘ G):A–onto→C) → F:B–→C) | |
2 | foelrn 5425 | . . . . . 6 ⊢ (((F ∘ G):A–onto→C ∧ y ∈ C) → ∃z ∈ A y = ((F ∘ G) ‘z)) | |
3 | ffvelrn 5415 | . . . . . . . . . 10 ⊢ ((G:A–→B ∧ z ∈ A) → (G ‘z) ∈ B) | |
4 | 3 | adantll 694 | . . . . . . . . 9 ⊢ (((F:B–→C ∧ G:A–→B) ∧ z ∈ A) → (G ‘z) ∈ B) |
5 | fvco3 5384 | . . . . . . . . . 10 ⊢ ((G:A–→B ∧ z ∈ A) → ((F ∘ G) ‘z) = (F ‘(G ‘z))) | |
6 | 5 | adantll 694 | . . . . . . . . 9 ⊢ (((F:B–→C ∧ G:A–→B) ∧ z ∈ A) → ((F ∘ G) ‘z) = (F ‘(G ‘z))) |
7 | fveq2 5328 | . . . . . . . . . . 11 ⊢ (x = (G ‘z) → (F ‘x) = (F ‘(G ‘z))) | |
8 | 7 | eqeq2d 2364 | . . . . . . . . . 10 ⊢ (x = (G ‘z) → (((F ∘ G) ‘z) = (F ‘x) ↔ ((F ∘ G) ‘z) = (F ‘(G ‘z)))) |
9 | 8 | rspcev 2955 | . . . . . . . . 9 ⊢ (((G ‘z) ∈ B ∧ ((F ∘ G) ‘z) = (F ‘(G ‘z))) → ∃x ∈ B ((F ∘ G) ‘z) = (F ‘x)) |
10 | 4, 6, 9 | syl2anc 642 | . . . . . . . 8 ⊢ (((F:B–→C ∧ G:A–→B) ∧ z ∈ A) → ∃x ∈ B ((F ∘ G) ‘z) = (F ‘x)) |
11 | eqeq1 2359 | . . . . . . . . 9 ⊢ (y = ((F ∘ G) ‘z) → (y = (F ‘x) ↔ ((F ∘ G) ‘z) = (F ‘x))) | |
12 | 11 | rexbidv 2635 | . . . . . . . 8 ⊢ (y = ((F ∘ G) ‘z) → (∃x ∈ B y = (F ‘x) ↔ ∃x ∈ B ((F ∘ G) ‘z) = (F ‘x))) |
13 | 10, 12 | syl5ibrcom 213 | . . . . . . 7 ⊢ (((F:B–→C ∧ G:A–→B) ∧ z ∈ A) → (y = ((F ∘ G) ‘z) → ∃x ∈ B y = (F ‘x))) |
14 | 13 | rexlimdva 2738 | . . . . . 6 ⊢ ((F:B–→C ∧ G:A–→B) → (∃z ∈ A y = ((F ∘ G) ‘z) → ∃x ∈ B y = (F ‘x))) |
15 | 2, 14 | syl5 28 | . . . . 5 ⊢ ((F:B–→C ∧ G:A–→B) → (((F ∘ G):A–onto→C ∧ y ∈ C) → ∃x ∈ B y = (F ‘x))) |
16 | 15 | impl 603 | . . . 4 ⊢ ((((F:B–→C ∧ G:A–→B) ∧ (F ∘ G):A–onto→C) ∧ y ∈ C) → ∃x ∈ B y = (F ‘x)) |
17 | 16 | ralrimiva 2697 | . . 3 ⊢ (((F:B–→C ∧ G:A–→B) ∧ (F ∘ G):A–onto→C) → ∀y ∈ C ∃x ∈ B y = (F ‘x)) |
18 | 17 | 3impa 1146 | . 2 ⊢ ((F:B–→C ∧ G:A–→B ∧ (F ∘ G):A–onto→C) → ∀y ∈ C ∃x ∈ B y = (F ‘x)) |
19 | dffo3 5422 | . 2 ⊢ (F:B–onto→C ↔ (F:B–→C ∧ ∀y ∈ C ∃x ∈ B y = (F ‘x))) | |
20 | 1, 18, 19 | sylanbrc 645 | 1 ⊢ ((F:B–→C ∧ G:A–→B ∧ (F ∘ G):A–onto→C) → F:B–onto→C) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∧ w3a 934 = wceq 1642 ∈ wcel 1710 ∀wral 2614 ∃wrex 2615 ∘ ccom 4721 –→wf 4777 –onto→wfo 4779 ‘cfv 4781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-1c 4081 ax-sset 4082 ax-si 4083 ax-ins2 4084 ax-ins3 4085 ax-typlower 4086 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-reu 2621 df-rmo 2622 df-rab 2623 df-v 2861 df-sbc 3047 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-symdif 3216 df-ss 3259 df-pss 3261 df-nul 3551 df-if 3663 df-pw 3724 df-sn 3741 df-pr 3742 df-uni 3892 df-int 3927 df-opk 4058 df-1c 4136 df-pw1 4137 df-uni1 4138 df-xpk 4185 df-cnvk 4186 df-ins2k 4187 df-ins3k 4188 df-imak 4189 df-cok 4190 df-p6 4191 df-sik 4192 df-ssetk 4193 df-imagek 4194 df-idk 4195 df-iota 4339 df-0c 4377 df-addc 4378 df-nnc 4379 df-fin 4380 df-lefin 4440 df-ltfin 4441 df-ncfin 4442 df-tfin 4443 df-evenfin 4444 df-oddfin 4445 df-sfin 4446 df-spfin 4447 df-phi 4565 df-op 4566 df-proj1 4567 df-proj2 4568 df-opab 4623 df-br 4640 df-co 4726 df-ima 4727 df-id 4767 df-xp 4784 df-cnv 4785 df-rn 4786 df-dm 4787 df-res 4788 df-fun 4789 df-fn 4790 df-f 4791 df-fo 4793 df-fv 4795 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |