New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > in31 | GIF version |
Description: A rearrangement of intersection. (Contributed by NM, 27-Aug-2012.) |
Ref | Expression |
---|---|
in31 | ⊢ ((A ∩ B) ∩ C) = ((C ∩ B) ∩ A) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | in12 3467 | . 2 ⊢ (C ∩ (A ∩ B)) = (A ∩ (C ∩ B)) | |
2 | incom 3449 | . 2 ⊢ ((A ∩ B) ∩ C) = (C ∩ (A ∩ B)) | |
3 | incom 3449 | . 2 ⊢ ((C ∩ B) ∩ A) = (A ∩ (C ∩ B)) | |
4 | 1, 2, 3 | 3eqtr4i 2383 | 1 ⊢ ((A ∩ B) ∩ C) = ((C ∩ B) ∩ A) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1642 ∩ cin 3209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 |
This theorem is referenced by: inrot 3471 |
Copyright terms: Public domain | W3C validator |