New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 3eqtr4i | GIF version |
Description: An inference from three chained equalities. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
3eqtr4i.1 | ⊢ A = B |
3eqtr4i.2 | ⊢ C = A |
3eqtr4i.3 | ⊢ D = B |
Ref | Expression |
---|---|
3eqtr4i | ⊢ C = D |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr4i.2 | . 2 ⊢ C = A | |
2 | 3eqtr4i.3 | . . 3 ⊢ D = B | |
3 | 3eqtr4i.1 | . . 3 ⊢ A = B | |
4 | 2, 3 | eqtr4i 2376 | . 2 ⊢ D = A |
5 | 1, 4 | eqtr4i 2376 | 1 ⊢ C = D |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1642 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-ex 1542 df-cleq 2346 |
This theorem is referenced by: rabswap 2791 rabbiia 2850 cbvrab 2858 cbvcsb 3141 csbco 3146 cbvrabcsf 3202 un4 3424 in13 3469 in31 3470 in4 3472 indifcom 3501 indir 3504 undir 3505 notrab 3533 symdifcom 3543 dfnul3 3554 rab0 3572 dfif5 3675 prcom 3799 tprot 3816 tpcoma 3817 tpcomb 3818 tpass 3819 qdassr 3821 pwpw0 3856 pwsn 3882 pwsnALT 3883 int0 3941 cbviun 4004 cbviin 4005 iunrab 4014 iunin1 4032 pw0 4161 cbviota 4345 sb8iota 4347 addccom 4407 addc32 4417 nncaddccl 4420 ltfintrilem1 4466 phiun 4615 cbvopab 4631 cbvopab1 4633 cbvopab2 4634 cbvopab1s 4635 cbvopab2v 4637 unopab 4639 dfid3 4769 rabxp 4815 xpundi 4833 xpundir 4834 inxp 4864 cnvco 4895 resundi 4982 resundir 4983 resindi 4984 resindir 4985 rescom 4990 resima 5007 imadmrn 5009 cnvimarndm 5018 cnvi 5033 cnvin 5036 rnun 5037 imaundi 5040 cnvxp 5044 resdmres 5079 imadmres 5080 df2nd2 5112 iunfopab 5205 resdif 5307 fvco2 5383 fpr 5438 rnsi 5522 dfoprab2 5559 cbvoprab1 5568 cbvoprab2 5569 cbvoprab12 5570 cbvoprab3 5572 resoprab 5582 caov32 5636 caov31 5638 caov4 5640 caovlem2 5645 cbvmpt 5677 cbvmpt2x 5679 mptpreima 5683 fmpt2x 5731 cnvpprod 5842 rnpprod 5843 dfnnc3 5886 map0e 6024 enmap2lem1 6064 enmap1lem1 6070 muccom 6135 mucass 6136 muc0 6143 ncpw1c 6155 tce2 6237 addccan2nclem2 6265 nchoicelem1 6290 nchoicelem2 6291 nchoicelem16 6305 dmsnfn 6328 |
Copyright terms: Public domain | W3C validator |