New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > fco | GIF version |
Description: Composition of two mappings. (The proof was shortened by Andrew Salmon, 17-Sep-2011.) (Contributed by set.mm contributors, 29-Aug-1999.) (Revised by set.mm contributors, 18-Sep-2011.) |
Ref | Expression |
---|---|
fco | ⊢ ((F:B–→C ∧ G:A–→B) → (F ∘ G):A–→C) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnco 5192 | . . . . . 6 ⊢ ((F Fn B ∧ G Fn A ∧ ran G ⊆ B) → (F ∘ G) Fn A) | |
2 | 1 | 3expib 1154 | . . . . 5 ⊢ (F Fn B → ((G Fn A ∧ ran G ⊆ B) → (F ∘ G) Fn A)) |
3 | 2 | adantr 451 | . . . 4 ⊢ ((F Fn B ∧ ran F ⊆ C) → ((G Fn A ∧ ran G ⊆ B) → (F ∘ G) Fn A)) |
4 | rncoss 4973 | . . . . . 6 ⊢ ran (F ∘ G) ⊆ ran F | |
5 | sstr 3281 | . . . . . 6 ⊢ ((ran (F ∘ G) ⊆ ran F ∧ ran F ⊆ C) → ran (F ∘ G) ⊆ C) | |
6 | 4, 5 | mpan 651 | . . . . 5 ⊢ (ran F ⊆ C → ran (F ∘ G) ⊆ C) |
7 | 6 | adantl 452 | . . . 4 ⊢ ((F Fn B ∧ ran F ⊆ C) → ran (F ∘ G) ⊆ C) |
8 | 3, 7 | jctird 528 | . . 3 ⊢ ((F Fn B ∧ ran F ⊆ C) → ((G Fn A ∧ ran G ⊆ B) → ((F ∘ G) Fn A ∧ ran (F ∘ G) ⊆ C))) |
9 | 8 | imp 418 | . 2 ⊢ (((F Fn B ∧ ran F ⊆ C) ∧ (G Fn A ∧ ran G ⊆ B)) → ((F ∘ G) Fn A ∧ ran (F ∘ G) ⊆ C)) |
10 | df-f 4792 | . . 3 ⊢ (F:B–→C ↔ (F Fn B ∧ ran F ⊆ C)) | |
11 | df-f 4792 | . . 3 ⊢ (G:A–→B ↔ (G Fn A ∧ ran G ⊆ B)) | |
12 | 10, 11 | anbi12i 678 | . 2 ⊢ ((F:B–→C ∧ G:A–→B) ↔ ((F Fn B ∧ ran F ⊆ C) ∧ (G Fn A ∧ ran G ⊆ B))) |
13 | df-f 4792 | . 2 ⊢ ((F ∘ G):A–→C ↔ ((F ∘ G) Fn A ∧ ran (F ∘ G) ⊆ C)) | |
14 | 9, 12, 13 | 3imtr4i 257 | 1 ⊢ ((F:B–→C ∧ G:A–→B) → (F ∘ G):A–→C) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ⊆ wss 3258 ∘ ccom 4722 ran crn 4774 Fn wfn 4777 –→wf 4778 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-co 4727 df-ima 4728 df-id 4768 df-cnv 4786 df-rn 4787 df-dm 4788 df-fun 4790 df-fn 4791 df-f 4792 |
This theorem is referenced by: f1co 5265 foco 5280 enmap2lem5 6068 enmap1lem5 6074 |
Copyright terms: Public domain | W3C validator |