New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > fnun | GIF version |
Description: The union of two functions with disjoint domains. (Contributed by set.mm contributors, 22-Sep-2004.) |
Ref | Expression |
---|---|
fnun | ⊢ (((F Fn A ∧ G Fn B) ∧ (A ∩ B) = ∅) → (F ∪ G) Fn (A ∪ B)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fn 4791 | . . 3 ⊢ (F Fn A ↔ (Fun F ∧ dom F = A)) | |
2 | df-fn 4791 | . . 3 ⊢ (G Fn B ↔ (Fun G ∧ dom G = B)) | |
3 | ineq12 3453 | . . . . . . . . . . 11 ⊢ ((dom F = A ∧ dom G = B) → (dom F ∩ dom G) = (A ∩ B)) | |
4 | 3 | eqeq1d 2361 | . . . . . . . . . 10 ⊢ ((dom F = A ∧ dom G = B) → ((dom F ∩ dom G) = ∅ ↔ (A ∩ B) = ∅)) |
5 | 4 | anbi2d 684 | . . . . . . . . 9 ⊢ ((dom F = A ∧ dom G = B) → (((Fun F ∧ Fun G) ∧ (dom F ∩ dom G) = ∅) ↔ ((Fun F ∧ Fun G) ∧ (A ∩ B) = ∅))) |
6 | funun 5147 | . . . . . . . . 9 ⊢ (((Fun F ∧ Fun G) ∧ (dom F ∩ dom G) = ∅) → Fun (F ∪ G)) | |
7 | 5, 6 | syl6bir 220 | . . . . . . . 8 ⊢ ((dom F = A ∧ dom G = B) → (((Fun F ∧ Fun G) ∧ (A ∩ B) = ∅) → Fun (F ∪ G))) |
8 | dmun 4913 | . . . . . . . . 9 ⊢ dom (F ∪ G) = (dom F ∪ dom G) | |
9 | uneq12 3414 | . . . . . . . . 9 ⊢ ((dom F = A ∧ dom G = B) → (dom F ∪ dom G) = (A ∪ B)) | |
10 | 8, 9 | syl5eq 2397 | . . . . . . . 8 ⊢ ((dom F = A ∧ dom G = B) → dom (F ∪ G) = (A ∪ B)) |
11 | 7, 10 | jctird 528 | . . . . . . 7 ⊢ ((dom F = A ∧ dom G = B) → (((Fun F ∧ Fun G) ∧ (A ∩ B) = ∅) → (Fun (F ∪ G) ∧ dom (F ∪ G) = (A ∪ B)))) |
12 | df-fn 4791 | . . . . . . 7 ⊢ ((F ∪ G) Fn (A ∪ B) ↔ (Fun (F ∪ G) ∧ dom (F ∪ G) = (A ∪ B))) | |
13 | 11, 12 | syl6ibr 218 | . . . . . 6 ⊢ ((dom F = A ∧ dom G = B) → (((Fun F ∧ Fun G) ∧ (A ∩ B) = ∅) → (F ∪ G) Fn (A ∪ B))) |
14 | 13 | exp3a 425 | . . . . 5 ⊢ ((dom F = A ∧ dom G = B) → ((Fun F ∧ Fun G) → ((A ∩ B) = ∅ → (F ∪ G) Fn (A ∪ B)))) |
15 | 14 | impcom 419 | . . . 4 ⊢ (((Fun F ∧ Fun G) ∧ (dom F = A ∧ dom G = B)) → ((A ∩ B) = ∅ → (F ∪ G) Fn (A ∪ B))) |
16 | 15 | an4s 799 | . . 3 ⊢ (((Fun F ∧ dom F = A) ∧ (Fun G ∧ dom G = B)) → ((A ∩ B) = ∅ → (F ∪ G) Fn (A ∪ B))) |
17 | 1, 2, 16 | syl2anb 465 | . 2 ⊢ ((F Fn A ∧ G Fn B) → ((A ∩ B) = ∅ → (F ∪ G) Fn (A ∪ B))) |
18 | 17 | imp 418 | 1 ⊢ (((F Fn A ∧ G Fn B) ∧ (A ∩ B) = ∅) → (F ∪ G) Fn (A ∪ B)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 = wceq 1642 ∪ cun 3208 ∩ cin 3209 ∅c0 3551 dom cdm 4773 Fun wfun 4776 Fn wfn 4777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-co 4727 df-ima 4728 df-id 4768 df-cnv 4786 df-rn 4787 df-dm 4788 df-fun 4790 df-fn 4791 |
This theorem is referenced by: fnunsn 5191 fun 5237 f1oun 5305 fnfullfun 5859 |
Copyright terms: Public domain | W3C validator |