NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  mooran1 GIF version

Theorem mooran1 2258
Description: "At most one" imports disjunction to conjunction. (Contributed by NM, 5-Apr-2004.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
Assertion
Ref Expression
mooran1 ((∃*xφ ∃*xψ) → ∃*x(φ ψ))

Proof of Theorem mooran1
StepHypRef Expression
1 simpl 443 . . 3 ((φ ψ) → φ)
21moimi 2251 . 2 (∃*xφ∃*x(φ ψ))
3 moan 2255 . 2 (∃*xψ∃*x(φ ψ))
42, 3jaoi 368 1 ((∃*xφ ∃*xψ) → ∃*x(φ ψ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   wo 357   wa 358  ∃*wmo 2205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator