| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > mooran2 | GIF version | ||
| Description: "At most one" exports disjunction to conjunction. (Contributed by NM, 5-Apr-2004.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
| Ref | Expression |
|---|---|
| mooran2 | ⊢ (∃*x(φ ∨ ψ) → (∃*xφ ∧ ∃*xψ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | moor 2257 | . 2 ⊢ (∃*x(φ ∨ ψ) → ∃*xφ) | |
| 2 | olc 373 | . . 3 ⊢ (ψ → (φ ∨ ψ)) | |
| 3 | 2 | moimi 2251 | . 2 ⊢ (∃*x(φ ∨ ψ) → ∃*xψ) |
| 4 | 1, 3 | jca 518 | 1 ⊢ (∃*x(φ ∨ ψ) → (∃*xφ ∧ ∃*xψ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 357 ∧ wa 358 ∃*wmo 2205 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |