| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > moanim | GIF version | ||
| Description: Introduction of a conjunct into "at most one" quantifier. (Contributed by NM, 3-Dec-2001.) |
| Ref | Expression |
|---|---|
| moanim.1 | ⊢ Ⅎxφ |
| Ref | Expression |
|---|---|
| moanim | ⊢ (∃*x(φ ∧ ψ) ↔ (φ → ∃*xψ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | impexp 433 | . . . . 5 ⊢ (((φ ∧ ψ) → x = y) ↔ (φ → (ψ → x = y))) | |
| 2 | 1 | albii 1566 | . . . 4 ⊢ (∀x((φ ∧ ψ) → x = y) ↔ ∀x(φ → (ψ → x = y))) |
| 3 | moanim.1 | . . . . 5 ⊢ Ⅎxφ | |
| 4 | 3 | 19.21 1796 | . . . 4 ⊢ (∀x(φ → (ψ → x = y)) ↔ (φ → ∀x(ψ → x = y))) |
| 5 | 2, 4 | bitri 240 | . . 3 ⊢ (∀x((φ ∧ ψ) → x = y) ↔ (φ → ∀x(ψ → x = y))) |
| 6 | 5 | exbii 1582 | . 2 ⊢ (∃y∀x((φ ∧ ψ) → x = y) ↔ ∃y(φ → ∀x(ψ → x = y))) |
| 7 | nfv 1619 | . . 3 ⊢ Ⅎy(φ ∧ ψ) | |
| 8 | 7 | mo2 2233 | . 2 ⊢ (∃*x(φ ∧ ψ) ↔ ∃y∀x((φ ∧ ψ) → x = y)) |
| 9 | nfv 1619 | . . . . 5 ⊢ Ⅎyψ | |
| 10 | 9 | mo2 2233 | . . . 4 ⊢ (∃*xψ ↔ ∃y∀x(ψ → x = y)) |
| 11 | 10 | imbi2i 303 | . . 3 ⊢ ((φ → ∃*xψ) ↔ (φ → ∃y∀x(ψ → x = y))) |
| 12 | 19.37v 1899 | . . 3 ⊢ (∃y(φ → ∀x(ψ → x = y)) ↔ (φ → ∃y∀x(ψ → x = y))) | |
| 13 | 11, 12 | bitr4i 243 | . 2 ⊢ ((φ → ∃*xψ) ↔ ∃y(φ → ∀x(ψ → x = y))) |
| 14 | 6, 8, 13 | 3bitr4i 268 | 1 ⊢ (∃*x(φ ∧ ψ) ↔ (φ → ∃*xψ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∀wal 1540 ∃wex 1541 Ⅎwnf 1544 ∃*wmo 2205 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 |
| This theorem is referenced by: moanimv 2262 moaneu 2263 moanmo 2264 2eu1 2284 |
| Copyright terms: Public domain | W3C validator |