New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ssnelpssd | GIF version |
Description: Subclass inclusion with one element of the superclass missing is proper subclass inclusion. Deduction form of ssnelpss 3614. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
ssnelpssd.1 | ⊢ (φ → A ⊆ B) |
ssnelpssd.2 | ⊢ (φ → C ∈ B) |
ssnelpssd.3 | ⊢ (φ → ¬ C ∈ A) |
Ref | Expression |
---|---|
ssnelpssd | ⊢ (φ → A ⊊ B) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssnelpssd.2 | . 2 ⊢ (φ → C ∈ B) | |
2 | ssnelpssd.3 | . 2 ⊢ (φ → ¬ C ∈ A) | |
3 | ssnelpssd.1 | . . 3 ⊢ (φ → A ⊆ B) | |
4 | ssnelpss 3614 | . . 3 ⊢ (A ⊆ B → ((C ∈ B ∧ ¬ C ∈ A) → A ⊊ B)) | |
5 | 3, 4 | syl 15 | . 2 ⊢ (φ → ((C ∈ B ∧ ¬ C ∈ A) → A ⊊ B)) |
6 | 1, 2, 5 | mp2and 660 | 1 ⊢ (φ → A ⊊ B) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 358 ∈ wcel 1710 ⊆ wss 3258 ⊊ wpss 3259 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-cleq 2346 df-clel 2349 df-ne 2519 df-pss 3262 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |