New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > reuss | GIF version |
Description: Transfer uniqueness to a smaller subclass. (Contributed by NM, 21-Aug-1999.) |
Ref | Expression |
---|---|
reuss | ⊢ ((A ⊆ B ∧ ∃x ∈ A φ ∧ ∃!x ∈ B φ) → ∃!x ∈ A φ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idd 21 | . . . 4 ⊢ (x ∈ A → (φ → φ)) | |
2 | 1 | rgen 2680 | . . 3 ⊢ ∀x ∈ A (φ → φ) |
3 | reuss2 3536 | . . 3 ⊢ (((A ⊆ B ∧ ∀x ∈ A (φ → φ)) ∧ (∃x ∈ A φ ∧ ∃!x ∈ B φ)) → ∃!x ∈ A φ) | |
4 | 2, 3 | mpanl2 662 | . 2 ⊢ ((A ⊆ B ∧ (∃x ∈ A φ ∧ ∃!x ∈ B φ)) → ∃!x ∈ A φ) |
5 | 4 | 3impb 1147 | 1 ⊢ ((A ⊆ B ∧ ∃x ∈ A φ ∧ ∃!x ∈ B φ) → ∃!x ∈ A φ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∧ w3a 934 ∈ wcel 1710 ∀wral 2615 ∃wrex 2616 ∃!wreu 2617 ⊆ wss 3258 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-rex 2621 df-reu 2622 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |