Step | Hyp | Ref
| Expression |
1 | | fnpw1fn 5854 |
. 2
⊢ Pw1Fn Fn 1c |
2 | | df-pw1fn 5767 |
. . . 4
⊢ Pw1Fn = (x ∈ 1c ↦ ℘1∪x) |
3 | 2 | rnmpt 5687 |
. . 3
⊢ ran Pw1Fn = {y ∣ ∃x ∈
1c y = ℘1∪x} |
4 | | vex 2863 |
. . . . . . 7
⊢ y ∈
V |
5 | 4 | sspw1 4336 |
. . . . . 6
⊢ (y ⊆ ℘1V ↔ ∃z(z ⊆ V ∧ y = ℘1z)) |
6 | | df1c2 4169 |
. . . . . . 7
⊢
1c = ℘1V |
7 | 6 | sseq2i 3297 |
. . . . . 6
⊢ (y ⊆
1c ↔ y ⊆ ℘1V) |
8 | | ssv 3292 |
. . . . . . . 8
⊢ z ⊆
V |
9 | 8 | biantrur 492 |
. . . . . . 7
⊢ (y = ℘1z ↔ (z
⊆ V ∧
y = ℘1z)) |
10 | 9 | exbii 1582 |
. . . . . 6
⊢ (∃z y = ℘1z ↔ ∃z(z ⊆ V ∧ y = ℘1z)) |
11 | 5, 7, 10 | 3bitr4i 268 |
. . . . 5
⊢ (y ⊆
1c ↔ ∃z y = ℘1z) |
12 | 4 | elpw 3729 |
. . . . 5
⊢ (y ∈ ℘1c ↔ y ⊆
1c) |
13 | | df-rex 2621 |
. . . . . 6
⊢ (∃x ∈ 1c y = ℘1∪x ↔ ∃x(x ∈
1c ∧ y = ℘1∪x)) |
14 | | el1c 4140 |
. . . . . . . . 9
⊢ (x ∈
1c ↔ ∃z x = {z}) |
15 | 14 | anbi1i 676 |
. . . . . . . 8
⊢ ((x ∈
1c ∧ y = ℘1∪x) ↔ (∃z x = {z} ∧ y = ℘1∪x)) |
16 | | 19.41v 1901 |
. . . . . . . 8
⊢ (∃z(x = {z} ∧ y = ℘1∪x) ↔ (∃z x = {z} ∧ y = ℘1∪x)) |
17 | 15, 16 | bitr4i 243 |
. . . . . . 7
⊢ ((x ∈
1c ∧ y = ℘1∪x) ↔ ∃z(x = {z} ∧ y = ℘1∪x)) |
18 | 17 | exbii 1582 |
. . . . . 6
⊢ (∃x(x ∈
1c ∧ y = ℘1∪x) ↔ ∃x∃z(x = {z} ∧ y = ℘1∪x)) |
19 | | excom 1741 |
. . . . . . 7
⊢ (∃x∃z(x = {z} ∧ y = ℘1∪x) ↔ ∃z∃x(x = {z} ∧ y = ℘1∪x)) |
20 | | snex 4112 |
. . . . . . . . 9
⊢ {z} ∈
V |
21 | | unieq 3901 |
. . . . . . . . . . . 12
⊢ (x = {z} →
∪x = ∪{z}) |
22 | | vex 2863 |
. . . . . . . . . . . . 13
⊢ z ∈
V |
23 | 22 | unisn 3908 |
. . . . . . . . . . . 12
⊢ ∪{z} = z |
24 | 21, 23 | syl6eq 2401 |
. . . . . . . . . . 11
⊢ (x = {z} →
∪x = z) |
25 | | pw1eq 4144 |
. . . . . . . . . . 11
⊢ (∪x = z → ℘1∪x = ℘1z) |
26 | 24, 25 | syl 15 |
. . . . . . . . . 10
⊢ (x = {z} →
℘1∪x = ℘1z) |
27 | 26 | eqeq2d 2364 |
. . . . . . . . 9
⊢ (x = {z} →
(y = ℘1∪x ↔ y =
℘1z)) |
28 | 20, 27 | ceqsexv 2895 |
. . . . . . . 8
⊢ (∃x(x = {z} ∧ y = ℘1∪x) ↔ y =
℘1z) |
29 | 28 | exbii 1582 |
. . . . . . 7
⊢ (∃z∃x(x = {z} ∧ y = ℘1∪x) ↔ ∃z y = ℘1z) |
30 | 19, 29 | bitri 240 |
. . . . . 6
⊢ (∃x∃z(x = {z} ∧ y = ℘1∪x) ↔ ∃z y = ℘1z) |
31 | 13, 18, 30 | 3bitri 262 |
. . . . 5
⊢ (∃x ∈ 1c y = ℘1∪x ↔ ∃z y = ℘1z) |
32 | 11, 12, 31 | 3bitr4i 268 |
. . . 4
⊢ (y ∈ ℘1c ↔ ∃x ∈ 1c y = ℘1∪x) |
33 | 32 | abbi2i 2465 |
. . 3
⊢ ℘1c = {y ∣ ∃x ∈ 1c y = ℘1∪x} |
34 | 3, 33 | eqtr4i 2376 |
. 2
⊢ ran Pw1Fn = ℘1c |
35 | | el1c 4140 |
. . . . . 6
⊢ (x ∈
1c ↔ ∃a x = {a}) |
36 | | el1c 4140 |
. . . . . 6
⊢ (y ∈
1c ↔ ∃b y = {b}) |
37 | 35, 36 | anbi12i 678 |
. . . . 5
⊢ ((x ∈
1c ∧ y ∈
1c) ↔ (∃a x = {a} ∧ ∃b y = {b})) |
38 | | eeanv 1913 |
. . . . 5
⊢ (∃a∃b(x = {a} ∧ y = {b}) ↔ (∃a x = {a} ∧ ∃b y = {b})) |
39 | 37, 38 | bitr4i 243 |
. . . 4
⊢ ((x ∈
1c ∧ y ∈
1c) ↔ ∃a∃b(x = {a} ∧ y = {b})) |
40 | | pw111 4171 |
. . . . . . . 8
⊢ (℘1a = ℘1b ↔ a =
b) |
41 | 40 | biimpi 186 |
. . . . . . 7
⊢ (℘1a = ℘1b → a =
b) |
42 | 41 | a1i 10 |
. . . . . 6
⊢ ((x = {a} ∧ y = {b}) → (℘1a = ℘1b → a =
b)) |
43 | | fveq2 5329 |
. . . . . . . 8
⊢ (x = {a} → (
Pw1Fn ‘x) = ( Pw1Fn
‘{a})) |
44 | | vex 2863 |
. . . . . . . . 9
⊢ a ∈
V |
45 | 44 | pw1fnval 5852 |
. . . . . . . 8
⊢ ( Pw1Fn ‘{a}) =
℘1a |
46 | 43, 45 | syl6eq 2401 |
. . . . . . 7
⊢ (x = {a} → (
Pw1Fn ‘x) = ℘1a) |
47 | | fveq2 5329 |
. . . . . . . 8
⊢ (y = {b} → (
Pw1Fn ‘y) = ( Pw1Fn
‘{b})) |
48 | | vex 2863 |
. . . . . . . . 9
⊢ b ∈
V |
49 | 48 | pw1fnval 5852 |
. . . . . . . 8
⊢ ( Pw1Fn ‘{b}) =
℘1b |
50 | 47, 49 | syl6eq 2401 |
. . . . . . 7
⊢ (y = {b} → (
Pw1Fn ‘y) = ℘1b) |
51 | 46, 50 | eqeqan12d 2368 |
. . . . . 6
⊢ ((x = {a} ∧ y = {b}) → (( Pw1Fn
‘x) = ( Pw1Fn ‘y)
↔ ℘1a = ℘1b)) |
52 | | eqeq12 2365 |
. . . . . . 7
⊢ ((x = {a} ∧ y = {b}) → (x =
y ↔ {a} = {b})) |
53 | 44 | sneqb 3877 |
. . . . . . 7
⊢ ({a} = {b} ↔
a = b) |
54 | 52, 53 | syl6bb 252 |
. . . . . 6
⊢ ((x = {a} ∧ y = {b}) → (x =
y ↔ a = b)) |
55 | 42, 51, 54 | 3imtr4d 259 |
. . . . 5
⊢ ((x = {a} ∧ y = {b}) → (( Pw1Fn
‘x) = ( Pw1Fn ‘y)
→ x = y)) |
56 | 55 | exlimivv 1635 |
. . . 4
⊢ (∃a∃b(x = {a} ∧ y = {b}) → (( Pw1Fn
‘x) = ( Pw1Fn ‘y)
→ x = y)) |
57 | 39, 56 | sylbi 187 |
. . 3
⊢ ((x ∈
1c ∧ y ∈
1c) → (( Pw1Fn
‘x) = ( Pw1Fn ‘y)
→ x = y)) |
58 | 57 | rgen2a 2681 |
. 2
⊢ ∀x ∈ 1c ∀y ∈ 1c (( Pw1Fn ‘x) = (
Pw1Fn ‘y) → x =
y) |
59 | | dff1o6 5476 |
. 2
⊢ ( Pw1Fn :1c–1-1-onto→℘1c ↔ ( Pw1Fn Fn 1c ∧ ran Pw1Fn = ℘1c ∧ ∀x ∈
1c ∀y ∈
1c (( Pw1Fn ‘x) = ( Pw1Fn
‘y) → x = y))) |
60 | 1, 34, 58, 59 | mpbir3an 1134 |
1
⊢ Pw1Fn :1c–1-1-onto→℘1c |