NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  sfin01 GIF version

Theorem sfin01 4529
Description: Zero and one satisfy Sfin. Theorem X.1.42 of [Rosser] p. 530. (Contributed by SF, 30-Jan-2015.)
Assertion
Ref Expression
sfin01 Sfin (0c, 1c)

Proof of Theorem sfin01
StepHypRef Expression
1 peano1 4403 . 2 0c Nn
2 1cnnc 4409 . 2 1c Nn
3 pw10 4162 . . 3 1 =
4 0ex 4111 . . . 4 V
54snel1c 4141 . . 3 {} 1c
6 el0c 4422 . . . . . 6 (1a 0c1a = )
7 pw1eq 4144 . . . . . . 7 (a = 1a = 1)
87eqeq1d 2361 . . . . . 6 (a = → (1a = 1 = ))
96, 8syl5bb 248 . . . . 5 (a = → (1a 0c1 = ))
10 pweq 3726 . . . . . . 7 (a = a = )
11 pw0 4161 . . . . . . 7 = {}
1210, 11syl6eq 2401 . . . . . 6 (a = a = {})
1312eleq1d 2419 . . . . 5 (a = → (a 1c ↔ {} 1c))
149, 13anbi12d 691 . . . 4 (a = → ((1a 0c a 1c) ↔ (1 = {} 1c)))
154, 14spcev 2947 . . 3 ((1 = {} 1c) → a(1a 0c a 1c))
163, 5, 15mp2an 653 . 2 a(1a 0c a 1c)
17 df-sfin 4447 . 2 ( Sfin (0c, 1c) ↔ (0c Nn 1c Nn a(1a 0c a 1c)))
181, 2, 16, 17mpbir3an 1134 1 Sfin (0c, 1c)
Colors of variables: wff setvar class
Syntax hints:   wa 358  wex 1541   = wceq 1642   wcel 1710  c0 3551  cpw 3723  {csn 3738  1cc1c 4135  1cpw1 4136   Nn cnnc 4374  0cc0c 4375   Sfin wsfin 4439
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-nul 3552  df-pw 3725  df-sn 3742  df-pr 3743  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-p6 4192  df-sik 4193  df-ssetk 4194  df-0c 4378  df-addc 4379  df-nnc 4380  df-sfin 4447
This theorem is referenced by:  sfintfin  4533
  Copyright terms: Public domain W3C validator