| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > mpt2eq123i | GIF version | ||
| Description: An equality inference for the maps to notation. (Contributed by set.mm contributors, 15-Jul-2013.) |
| Ref | Expression |
|---|---|
| mpt2eq123i.1 | ⊢ A = D |
| mpt2eq123i.2 | ⊢ B = E |
| mpt2eq123i.3 | ⊢ C = F |
| Ref | Expression |
|---|---|
| mpt2eq123i | ⊢ (x ∈ A, y ∈ B ↦ C) = (x ∈ D, y ∈ E ↦ F) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpt2eq123i.1 | . . . 4 ⊢ A = D | |
| 2 | 1 | a1i 10 | . . 3 ⊢ ( ⊤ → A = D) |
| 3 | mpt2eq123i.2 | . . . 4 ⊢ B = E | |
| 4 | 3 | a1i 10 | . . 3 ⊢ ( ⊤ → B = E) |
| 5 | mpt2eq123i.3 | . . . 4 ⊢ C = F | |
| 6 | 5 | a1i 10 | . . 3 ⊢ ( ⊤ → C = F) |
| 7 | 2, 4, 6 | mpt2eq123dv 5664 | . 2 ⊢ ( ⊤ → (x ∈ A, y ∈ B ↦ C) = (x ∈ D, y ∈ E ↦ F)) |
| 8 | 7 | trud 1323 | 1 ⊢ (x ∈ A, y ∈ B ↦ C) = (x ∈ D, y ∈ E ↦ F) |
| Colors of variables: wff setvar class |
| Syntax hints: ⊤ wtru 1316 = wceq 1642 ↦ cmpt2 5654 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-oprab 5529 df-mpt2 5655 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |