New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > mpteq12i | GIF version |
Description: An equality inference for the maps to notation. (Contributed by Scott Fenton, 27-Oct-2010.) |
Ref | Expression |
---|---|
mpteq12i.1 | ⊢ A = C |
mpteq12i.2 | ⊢ B = D |
Ref | Expression |
---|---|
mpteq12i | ⊢ (x ∈ A ↦ B) = (x ∈ C ↦ D) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpteq12i.1 | . . . 4 ⊢ A = C | |
2 | 1 | a1i 10 | . . 3 ⊢ ( ⊤ → A = C) |
3 | mpteq12i.2 | . . . 4 ⊢ B = D | |
4 | 3 | a1i 10 | . . 3 ⊢ ( ⊤ → B = D) |
5 | 2, 4 | mpteq12dv 5657 | . 2 ⊢ ( ⊤ → (x ∈ A ↦ B) = (x ∈ C ↦ D)) |
6 | 5 | trud 1323 | 1 ⊢ (x ∈ A ↦ B) = (x ∈ C ↦ D) |
Colors of variables: wff setvar class |
Syntax hints: ⊤ wtru 1316 = wceq 1642 ↦ cmpt 5652 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-ral 2620 df-opab 4624 df-mpt 5653 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |