| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > mpt2eq123dv | GIF version | ||
| Description: An equality deduction for the maps to notation. (Contributed by set.mm contributors, 12-Sep-2011.) |
| Ref | Expression |
|---|---|
| mpt2eq123dv.1 | ⊢ (φ → A = D) |
| mpt2eq123dv.2 | ⊢ (φ → B = E) |
| mpt2eq123dv.3 | ⊢ (φ → C = F) |
| Ref | Expression |
|---|---|
| mpt2eq123dv | ⊢ (φ → (x ∈ A, y ∈ B ↦ C) = (x ∈ D, y ∈ E ↦ F)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpt2eq123dv.1 | . . . . . 6 ⊢ (φ → A = D) | |
| 2 | 1 | eleq2d 2420 | . . . . 5 ⊢ (φ → (x ∈ A ↔ x ∈ D)) |
| 3 | mpt2eq123dv.2 | . . . . . 6 ⊢ (φ → B = E) | |
| 4 | 3 | eleq2d 2420 | . . . . 5 ⊢ (φ → (y ∈ B ↔ y ∈ E)) |
| 5 | 2, 4 | anbi12d 691 | . . . 4 ⊢ (φ → ((x ∈ A ∧ y ∈ B) ↔ (x ∈ D ∧ y ∈ E))) |
| 6 | mpt2eq123dv.3 | . . . . 5 ⊢ (φ → C = F) | |
| 7 | 6 | eqeq2d 2364 | . . . 4 ⊢ (φ → (z = C ↔ z = F)) |
| 8 | 5, 7 | anbi12d 691 | . . 3 ⊢ (φ → (((x ∈ A ∧ y ∈ B) ∧ z = C) ↔ ((x ∈ D ∧ y ∈ E) ∧ z = F))) |
| 9 | 8 | oprabbidv 5565 | . 2 ⊢ (φ → {〈〈x, y〉, z〉 ∣ ((x ∈ A ∧ y ∈ B) ∧ z = C)} = {〈〈x, y〉, z〉 ∣ ((x ∈ D ∧ y ∈ E) ∧ z = F)}) |
| 10 | df-mpt2 5655 | . 2 ⊢ (x ∈ A, y ∈ B ↦ C) = {〈〈x, y〉, z〉 ∣ ((x ∈ A ∧ y ∈ B) ∧ z = C)} | |
| 11 | df-mpt2 5655 | . 2 ⊢ (x ∈ D, y ∈ E ↦ F) = {〈〈x, y〉, z〉 ∣ ((x ∈ D ∧ y ∈ E) ∧ z = F)} | |
| 12 | 9, 10, 11 | 3eqtr4g 2410 | 1 ⊢ (φ → (x ∈ A, y ∈ B ↦ C) = (x ∈ D, y ∈ E ↦ F)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 358 = wceq 1642 ∈ wcel 1710 {coprab 5528 ↦ cmpt2 5654 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-oprab 5529 df-mpt2 5655 |
| This theorem is referenced by: mpt2eq123i 5665 |
| Copyright terms: Public domain | W3C validator |