New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > df-mpt2 | GIF version |
Description: Define maps-to notation for defining an operation via a rule. Read as "the operation defined by the map from x, y (in A × B) to B(x, y)." An extension of df-mpt 5653 for two arguments. (Contributed by SF, 5-Jan-2015.) |
Ref | Expression |
---|---|
df-mpt2 | ⊢ (x ∈ A, y ∈ B ↦ C) = {〈〈x, y〉, z〉 ∣ ((x ∈ A ∧ y ∈ B) ∧ z = C)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vx | . . 3 setvar x | |
2 | vy | . . 3 setvar y | |
3 | cA | . . 3 class A | |
4 | cB | . . 3 class B | |
5 | cC | . . 3 class C | |
6 | 1, 2, 3, 4, 5 | cmpt2 5654 | . 2 class (x ∈ A, y ∈ B ↦ C) |
7 | 1 | cv 1641 | . . . . . 6 class x |
8 | 7, 3 | wcel 1710 | . . . . 5 wff x ∈ A |
9 | 2 | cv 1641 | . . . . . 6 class y |
10 | 9, 4 | wcel 1710 | . . . . 5 wff y ∈ B |
11 | 8, 10 | wa 358 | . . . 4 wff (x ∈ A ∧ y ∈ B) |
12 | vz | . . . . . 6 setvar z | |
13 | 12 | cv 1641 | . . . . 5 class z |
14 | 13, 5 | wceq 1642 | . . . 4 wff z = C |
15 | 11, 14 | wa 358 | . . 3 wff ((x ∈ A ∧ y ∈ B) ∧ z = C) |
16 | 15, 1, 2, 12 | coprab 5528 | . 2 class {〈〈x, y〉, z〉 ∣ ((x ∈ A ∧ y ∈ B) ∧ z = C)} |
17 | 6, 16 | wceq 1642 | 1 wff (x ∈ A, y ∈ B ↦ C) = {〈〈x, y〉, z〉 ∣ ((x ∈ A ∧ y ∈ B) ∧ z = C)} |
Colors of variables: wff setvar class |
This definition is referenced by: mpt2eq123 5662 mpt2eq123dv 5664 mpt2eq3dva 5670 nfmpt21 5674 nfmpt22 5675 nfmpt2 5676 cbvmpt2x 5679 resmpt2 5698 fnov2 5708 mpt2mptx 5709 ovmpt4g 5711 ovmpt2x 5713 ovmpt2ga 5714 rnmpt2 5718 mpt2v 5720 fmpt2x 5731 releqmpt2 5810 composefn 5819 fnce 6177 |
Copyright terms: Public domain | W3C validator |