| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > mpt2v | GIF version | ||
| Description: Operation with universal domain in maps-to notation. (Contributed by set.mm contributors, 16-Aug-2013.) |
| Ref | Expression |
|---|---|
| mpt2v | ⊢ (x ∈ V, y ∈ V ↦ C) = {〈〈x, y〉, z〉 ∣ z = C} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mpt2 5655 | . 2 ⊢ (x ∈ V, y ∈ V ↦ C) = {〈〈x, y〉, z〉 ∣ ((x ∈ V ∧ y ∈ V) ∧ z = C)} | |
| 2 | vex 2863 | . . . . 5 ⊢ x ∈ V | |
| 3 | vex 2863 | . . . . 5 ⊢ y ∈ V | |
| 4 | 2, 3 | pm3.2i 441 | . . . 4 ⊢ (x ∈ V ∧ y ∈ V) |
| 5 | 4 | biantrur 492 | . . 3 ⊢ (z = C ↔ ((x ∈ V ∧ y ∈ V) ∧ z = C)) |
| 6 | 5 | oprabbii 5566 | . 2 ⊢ {〈〈x, y〉, z〉 ∣ z = C} = {〈〈x, y〉, z〉 ∣ ((x ∈ V ∧ y ∈ V) ∧ z = C)} |
| 7 | 1, 6 | eqtr4i 2376 | 1 ⊢ (x ∈ V, y ∈ V ↦ C) = {〈〈x, y〉, z〉 ∣ z = C} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 358 = wceq 1642 ∈ wcel 1710 Vcvv 2860 {coprab 5528 ↦ cmpt2 5654 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-v 2862 df-oprab 5529 df-mpt2 5655 |
| This theorem is referenced by: dfswap4 5730 |
| Copyright terms: Public domain | W3C validator |