New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > biantrur | GIF version |
Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 3-Aug-1994.) |
Ref | Expression |
---|---|
biantrur.1 | ⊢ φ |
Ref | Expression |
---|---|
biantrur | ⊢ (ψ ↔ (φ ∧ ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biantrur.1 | . 2 ⊢ φ | |
2 | ibar 490 | . 2 ⊢ (φ → (ψ ↔ (φ ∧ ψ))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (ψ ↔ (φ ∧ ψ)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: mpbiran 884 rexv 2874 reuv 2875 rmov 2876 rabab 2877 euxfr 3023 euind 3024 ddif 3399 nssinpss 3488 nsspssun 3489 vss 3588 elimif 3692 difsnpss 3852 sspr 3870 sstp 3871 elp6 4264 xpkvexg 4286 dfuni12 4292 addcid1 4406 vfinspsslem1 4551 xpcan 5058 ssrnres 5060 fvopabg 5392 fnressn 5439 rnoprab 5577 mptv 5719 mpt2v 5720 dmtxp 5803 pw1fnf1o 5856 |
Copyright terms: Public domain | W3C validator |