![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > biantrur | GIF version |
Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 3-Aug-1994.) |
Ref | Expression |
---|---|
biantrur.1 | ⊢ φ |
Ref | Expression |
---|---|
biantrur | ⊢ (ψ ↔ (φ ∧ ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biantrur.1 | . 2 ⊢ φ | |
2 | ibar 490 | . 2 ⊢ (φ → (ψ ↔ (φ ∧ ψ))) | |
3 | 1, 2 | ax-mp 8 | 1 ⊢ (ψ ↔ (φ ∧ ψ)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: mpbiran 884 rexv 2873 reuv 2874 rmov 2875 rabab 2876 euxfr 3022 euind 3023 ddif 3398 nssinpss 3487 nsspssun 3488 vss 3587 elimif 3691 difsnpss 3851 sspr 3869 sstp 3870 elp6 4263 xpkvexg 4285 dfuni12 4291 addcid1 4405 vfinspsslem1 4550 xpcan 5057 ssrnres 5059 fvopabg 5391 fnressn 5438 rnoprab 5576 mptv 5718 mpt2v 5719 dmtxp 5802 pw1fnf1o 5855 |
Copyright terms: Public domain | W3C validator |